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Introduction 

Evaluating catastrophe (cat) loss costs for ratemaking constitutes one of the principal applications of 

catastrophe models for primary insurers. Cat models, by virtue of their comprehensive stochastic 

event catalogs, provide a more complete view of cat risk and enable insurers to obtain superior cat-loss 

estimates than would otherwise be achievable from limited historical loss data alone. However, in 

some applications, it might be better to supplement the modeled data with historical information. For 

example, in the case of a high-frequency peril such as severe thunderstorm, even relatively limited 

historical data contain valuable information about the cat losses and should not be summarily 

discarded in favor of model results. An enhanced approach to cat loss estimation therefore aims to 

blend historical data and modeled data optimally to extract the maximum useful information from 

each. 

A 2012 report by David Lalonde (Blending Severe Thunderstorm Model Results with Loss Experience 

Data—A Balanced Approach to Ratemaking) formulated a method to blend historical and modeled severe 

thunderstorm losses together with non-cat losses to produce a composite estimate of total loss cost for 

ratemaking. The key idea in this approach was to blend the modeled losses above a selected threshold 

with the historical losses below that threshold to determine the cat component of the total losses. This is 

based on the rationale that there is an unequal quality of information between the tail and non-tail 

losses in the historical data. While the tail losses are not adequately captured in the historical data due 

to the low frequency of extreme events, the higher frequency non-tail losses are better captured, and 

represent a more complete picture consistent with a company’s underwriting philosophy. AIR’s 

blending formulation was combined with standard actuarial formulas to derive the following formula 

for the total loss cost: 

L = A(1+B) + C       (1) 

Where:    L = Total loss cost 

A = Trended historical non-cat loss cost 

    B = 
∑   istorical cat loss     

 istorical non-cat loss
 

    C = Loss cost for modeled cat loss > T 

In this formulation, T is the loss threshold corresponding to a specified exceedance (EP) value and N is 

the historical data sample size in years. 

This blending method was illustratedwith a U.S. severe thunderstorm case study, showing the effect 

of a range of threshold values on the total loss cost estimate. The results naturally raise the practical 

issue of selecting an appropriate value of   that produces the “best” total loss cost estimate. Assuming 

that the usefulness of the estimate is inversely related to its uncertainty, one logical approach to 

http://www.air-worldwide.com/Publications/AIR-Currents/2012/Blending-Severe-Thunderstorm-Model-Results-with-Loss-Experience-Data%E2%80%94A-Balanced-Approach-to-Ratemaking/
http://www.air-worldwide.com/Publications/AIR-Currents/2012/Blending-Severe-Thunderstorm-Model-Results-with-Loss-Experience-Data%E2%80%94A-Balanced-Approach-to-Ratemaking/
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selecting T would be to consider the criterion of minimum uncertainty in the total loss cost estimate. 

This uncertainty is governed by T through three principal components in (1).  

The first component originates from the AB term, which represents the cost  of the historical cat losses 

below the threshold. Statistically, the historical cat loss data may be treated as a single sample from a 

putative infinite population distribution of annual cat losses. AB is thus a single point estimate of the 

true, but unknown, cat loss cost, and consequently, subject to sampling uncertainty, which can be 

estimated through the method of bootstrapping. Other potential sources of uncertainty in the 

historical data, such as measurement error, are not included here to keep the analysis tractable.  

The second and third uncertainty components are the modeled loss uncertainties arising from the C 

term, which represents the cost of the extreme event (tail) losses derived from the cat model. Cat 

models, by virtue of their design and structure, encapsulate inherent primary, secondary, and sampling 

uncertainties in their results. The analysis of primary uncertainty, which arises from the event 

generation process within the model, is a complex task that is beyond the scope of this paper. On the 

other hand, secondary uncertainty, which arises from the stochastic variation of a structure’s response 

to a hazard, is readily quantifiable and included as standard features of AIR’s  ouchstone™ and 

CLASIC/2TM cat modeling software.  he model’s sampling uncertainty arises from the finite size of the 

stochastic catalog and can be estimated through bootstrapping in a similar manner to the estimation of 

the sampling uncertainty in the historical cat loss term B. For simplicity, we will therefore eliminate 

primary uncertainty from further consideration and define the modeled loss uncertainty to comprise 

of secondary and sampling uncertainty only. 

In the AIR blending formulation, the threshold T functions as a weighting factor that governs the 

balance between the historical and modeled data in the total loss cost estimate. A greater value of T 

increases the weight of historical data relative to modeled data, and vice versa. Consequently, the 

balance between the historical and modeled data uncertainties also varies with T. The optimum value 

of T is therefore that which minimizes the total uncertainty in the total loss cost estimate. In this paper, 

we will formulate a method to estimate each of the uncertainty components in (1) with the objective of 

finding the optimum T for minimum total loss cost uncertainty.   
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Mathematical Formulation 

The statistical models for the uncertainties in AB and C can be written as: 

AB = AB* + ε      (2) 

C = C* + δ + ω      (3) 

where AB* and C* are the true, but unknown, values of AB and C, respectively, and ε, δ, and ω are 

random variables representing the sampling uncertainty in AB*, and secondary and sampling 

uncertainties in C*, respectively. The statistical model for the total loss cost uncertainty is then: 

    L = A + (AB* + ε  +  C* + δ + ω) 

       =  A + AB* + C*  +  ε + δ + ω)    (4) 

 he total uncertainty in L is therefore the linear sum of ε, δ, and ω. Denoting the uncertainties of L, ε, 

δ, and ω as  L
 ,  ε

 ,  δ
 , and  ω

  respectively, we can thus relate the total loss uncertainty function to the 

threshold T through the uncertainty components in (1): 

     L
 ( ) =   ε

 ( ) +  δ
 ( )    

 ( )    (5) 

The next step is to determine the functional relationships for  ε
  =  ε

 ( ),  δ
  =  δ

 ( ), and   
  =   

 ( ) in 

order to locate the value of T that minimizes  L
    . 

Since the putative population of historical annual losses is unavailable,  ε
 ( )  cannot be estimated by 

sampling directly from it. However, this difficulty can be overcome by applying bootstrapping to the 

sample itself to approximate the sampling distribution for ε. Denoting the i’th bootstrap sample of the 

AB loss cost as Xi  i = 1 …n , the sampling uncertainty is then given by: 

    ε
 ( ) = 

1

n-1
∑ [ i    - 

1

n
∑  i    
n
i=1 ]

 
n
i=1      (6) 

The model secondary uncertainty  δ
 ( ) is readily estimated by utilizing the secondary uncertainty 

function in AIR’s CLASIC   software. For each aggregate annual loss, λi, the software computes the 

standard deviation  i of its attendant secondary uncertainty. The  secondary uncertainty in C is then 

the sum of the annual loss variances for all losses above the threshold T divided by the earned house 

years: 

     δ
 ( ) = 

∑  i
 

i

   
        λi > T     (7) 

The model sampling uncertainty is estimated in a similar fashion to (6): 
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 ( ) = 

1

n-1
∑ [ i    - 

1

n
∑  i   
n
i=1 ]

 
n
i=1     (8) 

Where Yi  i = 1 … n  is now the i’th bootstrap sample of the loss cost for modeled losses >  . 

Equations (5)–(8) provide the framework to quantify the total loss cost uncertainty  L
 ( ) as a function 

of T, given the historical and modeled loss data for any high-frequency peril. 

Case Study Analysis 

The dataset for the current case study was constructed by augmenting the AIR (2012) dataset with 

three additional scenarios corresponding to T = 40% EP ($22.9M), T = 60% EP ($14.6M), and T = 80% EP 

($9.12M) in order to extend the analysis range over the entire EP curve. The nominal total  loss cost 

results from AIR’s case study   01   are replicated in Table 1, together with the three new scenarios, 

and the attendant modeled loss EP curve and historical losses are illustrated in Figure 1 and Figure 2, 

respectively. 

For each scenario, the three uncertainty components  ε
 ( ),  δ

 ( )  and   
 ( ) were computed from (6)–

(8), and the total uncertainty  L
 ( ) was determined by summing the uncertainty components per (5). 

Table 1. Blended loss costs from AIR’s case study (2012) 

Scenario 
A: Non-Cat Loss 
Cost (AAL/EHY) 

B: Experience-
Based Cat Load 

C: Modeled 
Cat Loss Cost 

A(1 + B) + C:  

Total Loss 
Cost 

Historical Only 454.6 0.366626 0.000 621.2 

T = 5% EP 454.6 0.284259 38.43 622.2 

T = 10% EP 454.6 0.232670 52.94 613.2 

T = 20% EP 454.6 0.183478 68.88 606.8 

T = 40% EP 454.6 0.122654 94.59 604.9 

T = 60% EP 454.6 0.085943 99.11 592.7 

T = 80% EP 454.6 0.057595 110.8 591.5 

Model Only 454.6 0.000000 136.7 591.2 

http://www.air-worldwide.com/Publications/AIR-Currents/2012/Blending-Severe-Thunderstorm-Model-Results-with-Loss-Experience-Data%E2%80%94A-Balanced-Approach-to-Ratemaking/
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Figure 1. Severe thunderstorm modeled loss EP curve 

 

 

Figure 2. Historical annual aggregate losses 
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Case Study Results 

Figure 3 shows the ε sampling distribution produced by the bootstrapping process for   = 5%  P.  he 

sample estimate of AB*, the experience-based cat loss cost, is 129.2, and its sampling distribution 

ranges from 50 to 250. The sampling distribution exhibits a moderate degree of skewness but is 

otherwise well structured and approximately normal.  

 

Figure 3. Sampling distribution for experienced-based cat loss cost at T = 5% EP 

Table 2 and Figure 4 show the historical sampling, model and total uncertainties over the full range of 

T. The model uncertainty is the sum of the secondary and sampling uncertainties from the modeled 

loss cost for cat losses > T. Consistent with their mathematical formulations, the sampling and model 

uncertainties exhibit opposing trends with respect to T, with the former decreasing and the latter 

increasing as T increases. The relationship between the two uncertainties is characterized by three 

distinct intervals. At high threshold values corresponding to T  [0%, 35%] EP, the sampling 

uncertainty is significantly greater than the model uncertainty, and consequently  ε
  dominates the 

resultant total uncertainty. The converse is true at low threshold values corresponding to T  [80%, 

100%] EP where ( δ
  +   

 ) dominates the result. Lastly, the two uncertainties are comparable in 

magnitude in the intermediate interval T  [35%, 80%] EP with neither dominating the total 

uncertainty. 
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Table 2. Threshold effect on historical, model, and total uncertainty 

Scenario T ($M) 

  
 ( ): 

Historical 

Sampling 
Uncertainty 

  
 ( ) : Model 

Secondary 
Uncertainty 

  
 ( ): Model 
Sampling 

Uncertainty 

  
 ( ): Total 

Uncertainty 

Historical 
Only 

2.827 2880 0.000 0.000 2880 

T = 5% EP 150 823.0 11.58 6.940 841.5 

T = 10% EP 81.9 297.9 14.70 8.503 321.1 

T = 20% EP 44.1 96.73 17.97 9.491 124.2 

T = 40% EP 22.9 20.04 21.37 10.36 51.77 

T = 60% EP 14.6 4.791 23.38 10.51 38.68 

T = 80% EP 9.12 0.691 24.67 10.53 35.89 

Model Only 0.630 0.000 25.35 10.75 36.10 

The structure of the total uncertainty function  L
 ( ) is consequently shaped by the resultant 

interaction between the sampling and model uncertainties, the main features of which are their 

opposing curvatures, and their relative gradients and magnitudes over the three intervals. The result 

is a convex total uncertainty function (Figure 4) that decreases from  L
 ( ) = 2880 to  L

 ( ) = 36.10 over 

the interval T  [0%, 100%] EP with the minimum uncertainty of  L
 ( ) = 35.89 located at T = 80% EP 

(USD 9.12M). The total uncertainty is therefore minimized when the total loss cost is computed with 

model results for cat losses > USD 9.12M and historical data for cat losses < USD 9.12M. However, the 

total uncertainty varies little from its minimum value over the interval T  [70%, 100%] EP, and hence 

any selected value of T in this range would incur only a small uncertainty penalty. 
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Figure 4. Threshold effect on historical, model, and total uncertainty 

Aside from informing the selection of T, the total uncertainty results can also be utilized to compute 

confidence intervals around the total loss cost estimate to adjust the estimate to a desired level of 

conservatism relative to the risk of underestimating or overestimating the total loss cost. For example, 

at T = 5% EP, the standard deviation of the total loss cost uncertainty is  L = √ L
  = √  1.5  =   .01, and 

a 95% confidence interval for L is L  1. 6 L  622.2  56. 86.  

Therefore, to be 97.5% confident that the total loss cost is not underestimated, the estimate should be 

adjusted from the nominal value of L = 622.2 to L = 622.2 + 56.86 = 679.1. Similarly, an adjusted total 

loss cost of L = 622.2 - 56.86 = 565.3 ensures that there is a 97.5% probability that the total loss cost is 

not overestimated. 

Figure 5 summarizes the global analysis process flow to compute the uncertainties, select T, compute 

the confidence interval, and adjust the total loss cost estimate. 

 

 



 

Quantifying Uncertainty in Blending Severe Thunderstorm 

Model Results with Experience Loss Data for Ratemaking  

 

 12 

 CONFIDENTIAL 

 

 

Figure 5. Global analysis process flow 

Conclusion 

We have developed a framework to quantify the three principal uncertainty components in the AIR 

model blending method as a function of the threshold parameter. This extends the utility of the AIR 

method by providing an estimate of total uncertainty, as well as an objective basis to determine a 

range of suitable threshold values with low total uncertainties. The method was tested with an 

augmented set of the AIR (2012) case study data and produced satisfactory results. For the current 

dataset, small total loss cost uncertainties were obtained with T  [70%, 100%] EP with the minimum 

total uncertainty at T = 80% EP or USD 9.12M. These results will vary in general with different 

datasets.  

Aside from informing the selection of a suitable threshold T for the blending process, the results can 

also be deployed to compute total loss cost confidence intervals so that the nominal estimate can be 

suitably adjusted to achieve an appropriate level of risk tolerance. 
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Nomenclature 

A Trended historical non-cat loss cost 

AB* True value of AB 

B Estimated experience-based cat load = 
∑   istorical cat loss     

 istorical non-cat loss
 

C Estimated loss cost for modeled cat loss > T 

C* True value of C 

EHY Earned house years 

L Estimated total loss cost 

T Loss threshold corresponding to a specified EP value 

T* Selected value of T 

N Historical data sample size (years) 

N* Count of selected discrete T values within [0% 100%] EP 

n Count of bootstrap samples 

NC Catalog size 

Xi i’th bootstrap sample of loss cost for historical cat loss     

Yi i’th bootstrap sample of loss cost for historical cat loss > T 

δ Model secondary uncertainty random error 

ε Historical cat loss sampling random error 

λi Modeled annual loss for year i 

 i Standard deviation of secondary uncertainty for year i 

 L
 ( ) Total uncertainty 

  
 ( ) Model secondary uncertainty 

 ε
 ( ) Historical cat loss sampling uncertainty  

  
 ( ) Model sampling uncertainty 

ω Model sampling random error 
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