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Introduction

Evaluating catastrophe (cat) loss costs for ratemaking constitutes one of the principal applications of
catastrophe models for primary insurers. Cat models, by virtue of their comprehensive stochastic
event catalogs, providea more complete view of cat risk and enable insurers to obtain superior cat-loss
estimates than would otherwise be achievable from limited historical loss data alone. However, in
someapplications, it mightbebetter to supplement the modeled data with historical information. For
example, in the case of a high-frequency perilsuch as severe thunderstorm, even relatively limited
historical data contain valuable information about the cat losses and should not be summarily
discardedin favor of model results. An enhanced approach to catloss estimation therefore aims to
blend historical data and modeled data optimally to extract the maximum useful information from

each.

A 2012 reportby David Lalonde (Blending Severe Thunderstorm Model Results with Loss Experience

Data — A Balanced Approach to Ratemaking) formulated a method toblend historical and modeled severe

thunderstormlosses together with non-catlosses to produce a composite estimate of total loss cost for
ratemaking. Thekey idea in this approachwas toblend the modeledlosses above a selected threshold
with the historical losses below that threshold to determine the cat component of the total losses. This is
based on therationale that thereis an unequal quality of information between the tail and non-tail
losses in the historical data. While the tail lossesare notadequately captured in the historical data due
tothelow frequency of extreme events, the higher frequency non-taillossesarebetter captured, and
representa more complete picture consistent witha company’s underwriting philosophy. AIR’s
blending formulation was combined with standard actuarial formulas to derive the following formula

for thetotalloss cost:
L=A(1+B)+C )

Where: L =Total loss cost

A = Trended historicalnon-cat loss cost
2. (Historical cat loss<T)/N

Historical non-cat loss

C =Loss cost for modeled cat loss>T

In this formulation, T is theloss threshold corresponding to a specified exceedance (EP) value and N is

thehistorical datasamplesizein years.

This blending method was illustratedwith a U.S. severe thunderstorm case study, showing the effect
of a range of threshold valueson the total loss cost estimate. The results naturally raise the practical
issueof selecting an appropriate value of T that produces the “best” total loss cost estimate. Assuming

that the usefulness of the estimate is inversely related to its uncertainty, onelogical approachto
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selecting T would be to consider the criterion of minimum uncertainty in the total loss cost estimate.

This uncertainty is governed by T through three principal components in (1).

The first component originates from the AB term, which represents the cost of the historical catlosses
below the threshold. Statistically, the historical catloss datamay be treated as a single samplefrom a
putativeinfinite population distribution of annual cat losses. AB is thus a single point estimate of the
true, but unknown, cat loss cost, and consequently, subject to sampling uncertainty, which canbe
estimated through the method of bootstrapping. Other potential sources of uncertainty in the

historical data, suchas measurement error, are not included here to keep the analysis tractable.

The second and third uncertainty components are the modeled loss uncertainties arising from the C
term, which represents the cost of the extreme event (tail) losses derived from the cat model. Cat
models, by virtue of their design and structure, encapsulate inherent primary, secondary, and sampling
uncertainties in their results. The analysis of primary uncertainty, which arises from theevent
generation processwithinthe model, is a complex task that is beyond the scope of this paper. On the
other hand, secondary uncertainty, whicharises from the stochastic variation of a structure’s response
toa hazard, is readily quantifiable and included as standard features of AIR’s Touchstone™ and
CLASIC/2™ cat modeling software. The model’s sam pling uncertainty arises fromthe finite size of the
stochastic catalogand canbe estimated through bootstrappingin a similar manner to the estimation of
thesampling uncertainty in the historical catloss term B. For simplicity, we will therefore eliminate
primary uncertainty from further considerationand define the modeled loss uncertainty to comprise

of secondary and sampling uncertainty only.

In the AIR blending formulation, the threshold T functions as a weighting factor that governsthe
balancebetween the historical and modeled data in the total loss costestimate. A greater value of T
increases the weightof historical data relative to modeled data, and vice versa. Consequently, the
balance between the historical and modeled data uncertaintiesalso varies with T. The optimum value
of T is therefore that whichminimizes the total uncertainty in the total loss cost estimate. In this paper,
wewill formulate a method to estimate each of the uncertainty componentsin (1) with the objective of

finding the optimum T for minimum total loss cost uncertainty.
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Mathematical Formulation

Thestatistical models for the uncertainties in AB and C can be written as:
AB=AB*+¢ 2)
C=C*+d+w 3)

where AB*and C* are the true, butunknown, values of AB and C, respectively,and ¢,,and w are
random variables representing the sampling uncertainty in AB*, and secondary and sampling

uncertainties in C¥, respectively. The statistical model for the total loss costuncertainty is then:
L=A+(AB*+¢) +(C* +d +w)
=(A+AB*+CH)+ (e+d+w) “4)

Thetotal uncertainty in L is therefore thelinearsumof ¢, d, and w. Denoting the uncertaintiesof L, ¢,
d, and w as 0, 02, 03, and 02, respectively, we can thus relate the total loss uncertainty function to the

threshold T through the uncertainty components in (1):
ot (T) = 03(T) + o3 (D+ 07, (T) ®)

Thenext step is to determine the functional relationships for 02 = 62(T), 03 = 023(T), and 0% = 3,(T) in

order tolocate the value of T that minimizes o (T).

Since the putative population of historical annual losses is unavailable, o? (T) cannot be estimated by
sampling directly fromit. However, this difficulty canbe overcomeby applyingbootstrapping to the
sampleitself to approximate the sampling distribution for . Denoting thei’th bootstrap sample of the

AB loss cost as Xi(i=1...n), thesampling uncertainty is then given by:

oA=L 3 X - Lz ] ©)

The model secondary uncertainty o2 (T) is readily estimated by utilizing the secondary uncertainty
function in AIR’s CLASIC/2 software. For each aggregate annual loss, A;, the softw are computes the
standard deviationoiof its attendant secondary uncertainty. The secondary uncertainty in Cis then
thesum of the annual loss variances for all losses above the threshold T divided by the earned house

years:

AM=IL  vA>T @)

The model sampling uncertainty is estimated in a similar fashion to (6):
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2
05 (T) = ﬁ Pl [Yi(T) - :‘12111 Yi(T)] @)
WhereYi(i=1...n)is now thei’th bootstrap sample of the loss cost for modeled losses > T.

Equations (5)-(8) provide the framework to quantify the total loss cost uncertainty o? (T)as a function

of T, given thehistorical and modeled loss datafor any high-frequency peril.

Case Study Analysis

The dataset for the current case study was constructed by augmenting the AIR (2012) dataset with
three additional scenarios corresponding to T=40% EP ($22.9M), T= 60% EP ($14.6M), and T =80% EP
($9.12M)in order to extend the analysis range over the entire EP curve. Thenominal total loss cost
resultsfrom AIR’s case study (2012) arereplicated in Table 1, together with the threenew scenarios,
and theattendantmodeled loss EP curve and historical losses areillustrated in Figure 1 and Figure 2,

respectively.

For each scenario, the three uncertainty components 0% (T), 0% (T), and 0% (T) were computed from (6)-

(8), and the total uncertainty o7 (T) wasdetermined by summing the uncertainty components per (5).

Table 1. Blended loss costs from AIR’s case study (2012)

Scenario A: Non-Cat Loss B: Experience- C: Modeled A%QBR;SSC:
Cost (AAL/EHY) Based Cat Load Cat Loss Cost Cost
Historical Only 454.6 0.366626 0.000 621.2
T=5% EP 454.6 0.284259 38.43 622.2
T=10% EP 454.6 0.232670 52.94 613.2
T=20% EP 454.6 0.183478 68.88 606.8
T =40% EP 454.6 0.122654 94.59 604.9
T=60% EP 454.6 0.085943 99.11 592.7
T=380% EP 454.6 0.057595 110.8 591.5
Model Only 454.6 0.000000 136.7 591.2
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Figure 1. Severe thunderstorm modeled loss EP curve
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Figure 2. Historical annual aggregate losses
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Case Study Results

Figure 3 shows the e sampling distribution produced by the bootstrapping process for T=>5% EP. The
sample estimate of AB*, the experience-based catlosscost,is 129.2, and its sampling distribution
ranges from 50 to 250. The sampling distribution exhibits a moderate degree of skewness but is

otherwise well structured and approximately normal.

20

Experience-Based Loss
16 - Costat T= 5% EP

1.2

0.8 -

04 -

0.0

Probability Density Function x 100

50 100 150 200 250

Experience-Based CatLoss Cost

Figure 3. Sampling distribution for experienced-based cat loss cost at T = 5% EP

Table2 and Figure 4 show the historicalsampling, model and total uncertainties over the full range of
T. Themodel uncertainty is the sumof the secondary and sampling uncertainties from the modeled
loss cost for cat losses>T. Consistent with their mathematical formulations, the sampling and model
uncertainties exhibit opposing trends with respectto T, with the former decreasing and thelatter
increasingas T increases. The relationship between the two uncertaintiesis characterized by three
distinctintervals. At high threshold values corresponding to T € [0%, 35%] EP, the sampling
uncertainty is significantly greater than the model uncertainty, and consequently 0> dominatesthe
resultant total uncertainty. The converseis true at low threshold values corresponding to T € [80%,
100%] EP where (03 + 02) dominates the result. Lastly, the two uncertainties are comparable in
magnitudein theintermediateinterval T € [35%, 80%] EP with neither dominating the total

uncertainty.
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Table 2. Threshold effect on historical, model, and total uncertainty

2(1)-
o2(T): 2(7) - 2 (1)
- Historical 03(T): Model | o, (T): Model o2 (D): Total
Scenario T (M) Sampling Secondary Sampll_ng Uncertainty
Uncertainty Uncertainty Uncertainty
Historical 2.827 2880 0.000 0.000 2880
Only

T=5%EP 150 823.0 11.58 6.940 841.5
T=10% EP 81.9 297.9 14.70 8.503 321.1
T =20% EP 44.1 96.73 17.97 9.491 124.2
T =40% EP 22.9 20.04 21.37 10.36 51.77
T =60% EP 14.6 4.791 23.38 10.51 38.68
T =80% EP 9.12 0.691 24.67 10.53 35.89
Model Only 0.630 0.000 25.35 10.75 36.10

The structure of the total uncertainty function of (T) is consequently shaped by the resultant

interaction between the sampling and model uncertainties, the main features of which are their

opposing curvatures, and their relative gradientsand magnitudes over the threeintervals. The result

is a convex total uncertainty function (Figure4) that decreases from o7 (T) = 2880 to o7 (T) =36.10 over
theinterval T e [0%, 100%] EP with the minimum uncertainty of o7 (T) = 35.89 located at T=80% EP

(USD 9.12M). The total uncertainty is therefore minimized when the total loss cost is computed with
model resultsfor cat losses > USD9.12M and historical datafor cat losses <USD9.12M. How ever, the

total uncertainty varies little from itsminimumvalue over theinterval T € [70%, 100%] EP, and hence

any selected value of T in this range would incur only a small uncertainty penalty.
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Figure 4. Threshold effect on historical, model, and total uncertainty

Aside from informing the selection of T, the total uncertainty results can also be utilized to compute
confidenceintervals around the total loss cost estimate to adjust the estimate to a desired level of

conservatismrelative to the risk of underestimating or overestimating the total loss cost. For example,

at T =5% EP, the standard deviation of the total loss cost uncertainty is oy = ’O’i =v841.5 =29.01,and

a 95% confidenceintervalfor LisL £1.960L.— 622.2 £56.86.

Therefore, tobe 97.5% confident that the total loss cost is not underestimated, the estimate should be
adjusted from thenominal valueof L= 622.2toL=622.2+56.86 = 679.1. Similarly, an adjusted total
loss cost of L =622.2 - 56.86 =565.3 ensures that thereis a 97.5% probability that the total loss costis

not overestimated.

Figure 5 summarizes the global analysis process flow to compute the uncertainties, select T, compute

the confidenceinterval, and adjust the total loss cost estimate.
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Figure 5. Global analysis process flow

Conclusion

Wehavedeveloped a framework to quantify the three principal uncertainty components in the AIR
model blending method asa function of the threshold parameter. Thisextends the utility of the AIR
method by providing an estimate of total uncertainty, as well as an objectivebasisto determinea
range of suitable threshold values with low totaluncertainties. The method was tested withan
augmented set of the AIR (2012) case study data and produced satisfactory results. For the current
dataset, small total loss cost uncertainties were obtained with T e [70%, 100%] EP with the minimum
total uncertainty at T=80% EP or USD 9.12M. Theseresultswill vary in general with different

datasets.

Aside from informing the selection of a suitable threshold T for the blending process, the results can
alsobedeployed to compute total loss cost confidenceintervalsso that thenominalestimate can be

suitably adjusted to achieve an appropriatelevel of risk tolerance.
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Nomenclature

A
AB*

T*
N*

Nc
Xi
Yi

Ai
Oi
ot (T)
03(T)
oz (T)
a5, (T)

Trended historical non-catloss cost
Truevalueof AB
2 (Historical cat loss<T)/N

Historical non-cat loss

Estimated experience-based catload =

Estimated loss cost for modeled catloss>T
Truevalueof C

Earned houseyears

Estimated total loss cost

Loss threshold corresponding to a specified EP value
Selected valueof T

Historical data sample size (years)

Count of selected discrete T values within [0% 100%] EP
Count of bootstrap samples

Catalogsize

i‘th bootstrapsample ofloss cost for historical cat loss< T
i‘th bootstrapsample ofloss cost for historical cat loss>T
Model secondary uncertainty random error

Historical catloss sampling random error

Modeled annual loss for yeari

Standard deviation of secondary uncertainty for yeari
Total uncertainty

Model secondary uncertainty

Historical catloss sampling uncertainty

Model sampling uncertainty

Model sampling random error
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