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CONCLUSION  
Our studies have revealed that there are three 

important factors in the significant reduction of seismic 

risk in Chile after the 2010 Maule rupture:  

 The location of the earthquake itself 
 The shape of the country  
 The distribution of the exposure within the 

country  

Although large magnitude (M8–M8.5) events do occur 

relatively frequently along much of Chile’s coast, there 

is generally little exposure at risk from these events. 

Of the exposure at risk in the country, 80% lies within 

CRESTA zones impacted by events occurring within 

AIR Seismic Zone 5, the seismic zone in which the 

Maule earthquake occurred and released the 

accumulation of stress. 

After the 2010 Maule earthquake, a wealth of data 

became available that enabled better and broader 

assessment of seismic risk in South America, and 

informed the 2015 update to AIR’s earthquake models 

for Chile and the wider region. AIR validated modeled 

loss results with rigorous internal processes and 

under the scrutiny of external independent experts to 

ensure that final model results made sense. Given the 

importance of risk assessment to the local and global 

insurance industries exposed to earthquake risk in 

Chile, AIR is dedicated to providing clients the best 

view of risk as well as a clear understanding of the 

inner workings of the models. 

The reduction of risk in Chile reflected in the updated 

AIR model is almost exclusively attributable to the 

significant release of stress within AIR Seismic Zone 5 

after the Maule rupture, rather than to changes in 

modeling methodology. It is important to keep in mind, 

however, that due to the nature of time dependency, 

output from a TD model provides a view of risk only 

for a limited number of years into the future. 

Ultimately, seismic stress in the area impacted by the 

Maule earthquake will begin to slowly accumulate 

once again. 
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