The Addition of Great Britain Storm Surge to AIR's Extratropical Cyclone Model for Europe

Richard M. Yablonsky, Ph.D. Alastair Clarke, Ph.D.

©2019 AIR Worldwide

CONFIDENTIAL—FOR WEBINAR ATTENDEES ONLY

Introduction

History of AIR's Coastal Flood Model for Great Britain

Changes in Model Configuration

Previously: AIR Coastal Flood Model for Great Britain

2019 Update:

Storm Surge sub-peril in the AIR Extratropical Cyclone Model for Europe

CONFIDENTIAL—FOR WEBINAR ATTENDEES ONLY

What Is Storm Surge?

Extratropical Cyclones Generate Storm Surge in Great Britain Historical Storm Tracks

©2019 AIR Worldwide

Historical Events Affect Both the West and East Coasts

Storm Anne (2014): West Coast Example*

*another example is Storm Undine (1991)

Southerly wind pushes water into Irish Sea

Storm Xaver (2013): East Coast Example**

**another famous example is North Sea Flood (1953)

Northerly wind pushes water into the Channel

Updates to the Hazard Component

New Hydrodynamic Coastal Flood Model

- Expanded domain covers all of England and Wales
- Uses Delft3D Flexible Mesh
- Dynamic simulation of tides and surge
- Driven by wind and pressure from EU ETC model catalog (see Keshtpoor, Carnacina, and Yablonsky, 2019: New Statistical Approach to Select Coastal Flood-Producing Extratropical Cyclones from a 10,000-Year Stochastic Catalog. J. Waterway, Port, Coastal, and Ocean Eng.)
- Surge depth at 10-meter resolution via downscaling and topography subtraction

Hydrodynamic Domain Coarse Mesh <u>Fine Mesh:</u> Current Coverage New Coverage

CORINE Land Use/Land Cover Database

CORINE Land Use/Land Cover Database

- Data can be mapped to a Manning friction coefficient
- Helps to ensure proper flood extent over land
- Particularly challenging in urban areas

Incorporation of the Latest Levee Data Sources

UK Environment Agency Spatial Flood Defences Dataset

- 2016 vintage defense data set for the entire United Kingdom: defined crest heights, material, quality condition, and design type
- Undefined heights were extracted from 2- to10meter topography (DTM) sources

Thames River Defenses

- The Thames Barrier was completed in 1984
- During construction, flood defenses were raised by ~2 meters for ~30 km downstream to match the Barrier
- Defenses for ~5 km upstream were also raised to increase protection and match protection of Central London

Accounting for Breached Levees in Addition to Overtopping Levees

Hazard Model Validation

Storm Surge Model Validation at Great Britain Tide Gauges for Four Storms

Tide Gauge Locations

Four Storms Combined: 1953, Undine, Xaver, and Anne

CONFIDENTIAL—FOR WEBINAR ATTENDEES ONLY

Modeled Pressure, Wind, and Surge During North Sea Flood of 1953

- a) Sea level pressure
- b) West-to-east wind speed (U) \sim 180 meters above ground
- c) South-to-north wind speed (V) ~180 meters above ground
- d) Water level due to wind setup (without tide)

Modeled Water Level Near Thames Barrier from a Storm Like the 1953 North Sea Flood

Flood Extent Validation for the 1953 North Sea Flood Event (Thames River)

CONFIDENTIAL—FOR WEBINAR ATTENDEES ONLY

Flood Extent Validation Along the Humber River for 2013 Storm Xaver

CONFIDENTIAL—FOR WEBINAR ATTENDEES ONLY

City of Hull Close Up: Storm Xaver in 2013

City of Hull Close Up: Storm Xaver "Today"

Flood Validation for Storm Xaver in Boston, UK: Fine Mesh Versus Super-Fine Mesh

Sufficient resolution (up to 35 m) for water to reach Boston, UK

Insufficient resolution (~220 m) for water to reach Boston, UK

©2019 AIR Worldwide

CONFIDENTIAL—FOR WEBINAR ATTENDEES ONLY

Updates to the Vulnerability Component

Component-Level Damage Functions

Reduction in Commercial Building Vulnerability Relative to Residential

■ Residential ■ Commercial

Vulnerability Updates Leverage a Unified Framework Across Models in Europe

- Addition of marine cargo, marine hull, industrial facilities, wind turbine, and builder's risk
- Incorporation of unknown damage functions at CRESTA level
- Updated secondary
 damage distributions

67K Claims from Four Historical Floods Inform the Latest Secondary Uncertainty Distributions

Flood Depth

 Distinct secondary uncertainty distributions for Residential and Commercial risks

Damage Ratio

 In the new model, there is lower probability of zero or full damage

Support for New Secondary Risk Characteristics

Custom Flood Protection

Floor of Interest

First-Floor Height

Custom Elevation

New Industry Exposures Modeled at 90-Meter Resolution

- Utilized best available building footprint data sets to accurately locate risks
- Updated construction splits, replacement costs, coverage splits, and policy conditions
- Improved automobile valuation methodology
- Identified high-value industrial facilities

New Industry Exposures Modeled at 90-Meter Resolution

New Industry Exposures Modeled at 90-Meter Resolution

Modeled Losses

Historical Event Loss Validation

North Sea Flood (1953 Vintage)

Observed Data Sources: UK Met Office, Munich Re, ABI

CONFIDENTIAL—FOR WEBINAR ATTENDEES ONLY

Historical Event Loss Validation

Exceedance Probability of Insurable Gross Loss

Exceedance Probability of Insurable Gross Loss

Insured Aggregate Loss Comparison: Adding Surge

Residential, Commercial, Industrial, Agriculture, and Auto Lines of Business

CONFIDENTIAL—FOR WEBINAR ATTENDEES ONLY

Insured Aggregate Loss Comparison: Wind & Surge

Residential, Commercial, Industrial, Agriculture, and Auto Lines of Business

40

Loss

©2019 AIR Worldwide

Upcoming Software Changes

Functional Changes in Touchstone

Event Set:	10K European AP (2018) - Standard	-
Perils:	 Earthquake Earthquake Shake Fire Following Sprinkler Leakage Landslide Tsunami 	 Severe Storm Severe Thunderstorm Winter Storm Winter Storm Coastal Flood
	Liquefaction	
* Europe Extratropical Cyclone is still categorized as a "Tropical Cyclone" peril in Touchstone		
Event Set:	10K European AP (2019) - Standard	-
Perils:	🗹 Earthquake 💉 📝 Tropical Cyclone *	Severe Storm Other Perils:

Wind Severe Thunderstorm Inland Flood Earthquake Shake Storm Surge Winter Storm Wildfire/Bushfire Fire Following Precipitation Flood 📃 Terrorism 🏾 🔊 × Sprinkler Leakage Landslide Coastal Flood Tsunami Touchstone 2019 Liquefaction

Bonus Features in Touchstone and CATRADER/Touchstone Re

- 1) Events in the Database are tagged as either Extratropical Cyclone (E), Surge (S) or Combined (C).
- 2) In Touchstone[®] 2019, you can run the previous and new versions of the GB storm surge model
- 3) Users can apply financial terms on combined wind and surge losses in Touchstone and CATRADER®/Touchstone ReTM
- 4) CATRADER/Touchstone Re users can also get losses for the GB surge-only catalog
- 5) Exported CLFs will be for European ETC (even storm surge-only runs)

Summary

Added the storm surge sub-peril as part of AIR's Extratropical Cyclone Model for Europe

Expanded model coverage to include all of England and Wales

Updated with modern-day levee information to improve surge footprints

Enhanced damage functions using claims and peer-reviewed literature

Greater selection of primary and secondary characteristics to represent your risk

Questions?

