
IntroductIon
Portfolio optimization is a familiar concept in the business 
of insurance, although the term is often used to describe 
several slightly different processes. For the purposes of this 
article, we will define it as the selection of a set of policies 
that maximize certain desirable metrics of performance of a 
primary insurance book of business, while constraining other 
undesirable metrics. An insurance company, for example, 
may want to acquire policies from a state wind-pool or Fair 
Access to Insurance Requirements (FAIR) plan that satisfy its 
premium requirements while simultaneously producing the 
minimum expected loss. During renewal season, another 
company may want to examine whether dropping some 
policies could keep premiums at a satisfactory level but 
decrease their reinsurance costs significantly. In another 
example, a company may try to minimize expected losses 

in order to comply with regulatory demands while keeping 
the risk-based return of the portfolio as high as possible. 
In a more complex scenario, a company may want to 
impose certain constraints on the construction types and 
geographical aggregates included in the portfolio while 
keeping their financial yields constant.

Using AIR catastrophe models, it is possible to compute 
complex loss metrics of a portfolio as a function of the 
location of the exposure or of its physical features. It is 
therefore mathematically possible to tailor a portfolio so that 
its numerical performance meets certain desired objectives 
within reason. From such an analysis, underwriting patterns 
can be derived in order to guide the company’s operations 
towards achieving its risk management and financial goals.

Portfolio oPtimization for 
insurance comPanies

Editor’s note: AIR recently launched a decision analytics division within its 

consulting and client services group. Its offerings include novel solutions for 

portfolio optimization that are based on evolutionary search algorithms. In 

this article, Dr. Guillermo Franco, Manager and Principal Engineer, discusses 

methods applicable to insurers. 
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a sImple example
Suppose that a portfolio consists of two policies exposed 
to U.S. hurricane risk. Using the AIR hurricane model, we 
can calculate losses to each policy for every year of AIR’s 
10,000-year stochastic catalog. The resulting information 
can be arranged in a 2 × 10,000 table, with each of the 
two rows corresponding to a policy, and each column 
corresponding to one year of simulated hurricane activity.

To obtain the loss exceedance probability (EP) curve for 
each policy, the losses in each row are sorted from largest 
to smallest. The largest loss can be assigned an exceedance 
probability of 0.01% (1/10,000), meaning that it is equaled 
or surpassed only once in the 10,000 simulation years. 
The second largest loss is equaled or surpassed twice, 
corresponding to an exceedance probability of 2 in 10,000 
years, or 0.02%. Likewise, the twentieth, fortieth, and 
hundredth largest losses have exceedance probabilities of 
0.2%, 0.4%, and 1%, corresponding to the 500-, 250-, 
and 100-year return periods, respectively. By assigning a 
probability of exceedance to each loss, a full EP curve can 
be derived for each policy.

What about the EP curve for the entire portfolio? Keeping 
in mind that the loss to the portfolio for a given year is 
equal to the loss to Policy 1 for that year plus the loss to 
Policy 2, we must first go back to sum the losses on a year-
by-year basis and then re-rank the losses to the portfolio 
in order to compute a new EP curve. It is not possible to 
simply add the EP curves of the two policies because at 
each exceedance probability, the corresponding year of 
the catalog for Policy 1 may not match that of Policy 2. 
This non-additive property of the EP curve calculation is 
a characteristic nonlinearity of risk metrics, and here we 
encounter the first mathematical complexity in the analysis 
of portfolio losses.

In the practical realm, solutions readily available in the 
market to carry out this type of exercise are generally 
limited to ranking policies using a simple metric (like 
risk-based return or average annual loss) or, in more 
sophisticated attempts, incorporating mathematical 
approaches like the steepest ascent method for finding the 
maximum value of a function. These methods are typically 
driven by only one metric and are not particularly well-
suited to handle multiple simultaneous constraints. More 
often than not, these exercises are carried out manually 
using a type of scenario testing called marginal impact 
analysis, which involves examining the change to some 
given metrics upon discarding or accepting a certain portion 
of the portfolio.

While they may be referred to as such, these types of 
analyses are not true portfolio optimization exercises, which 
are rarely conducted for two primary reasons. First, the 
computation of many risk metrics is nonlinear, meaning 
that these metrics need to be recomputed from scratch for 
each alternative policy combination. Second, the process of 
solving for the optimal portfolio quickly becomes unfeasible 
from a technological standpoint because of the staggering 
number of potential solutions, even with relatively few 
policies.

Evolutionary search techniques, which are optimization 
methods that partly rely on the semi-random exploration of 
the solution space, have been suggested in the academic 
literature as plausible candidates to solve the problem 
of complex searches of potential policy combinations in 
an automated fashion. AIR has devoted several years to 
the development and application of these optimization 
techniques for addressing sampling variability constraints in 
our stochastic catalogs and in producing finely calibrated 
parametric catastrophe bonds. This article will explain how 
these techniques are now helping us approach the problem 
of portfolio optimization from a fresh and promising angle.
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The red line that links the solutions is often called the 
Pareto-optimal front or efficient frontier, and it represents 
the set of solutions that cannot be judged, a priori, explicitly 
better than one another. That is, in Figure 1, solutions 
with larger losses also have larger premiums; therefore it 
is impossible to decide from a mathematical standpoint 
whether one is superior to another without imposing other 
criteria. For example, if we wanted to achieve a certain 
minimum premium or to restrict expected losses below a 
certain threshold, some solutions may then be revealed to 
be preferable to others.

The fact that all solutions in this example lie on the Pareto-
optimal front is a result of this specific set of exposures and 
modeling results. It is not always the case, as shown in the 
next section.

more complex scenarIos
To make the problem slightly more complex, assume that 
the portfolio now contains five policies. As before, we can 
calculate the expected losses for each year of simulated 
activity and for each policy, and then compute the EP curve 
for any combination of policies. With five policies, however, 
the number of possible combinations grows quite a bit—to 
25, or 32. Also as before, the different solutions can be 
labeled with a binary number and a premium-loss graph 
can be produced, as shown in Figure 2.

Figure 2. Pareto-optimal front and the 32 possible combinations of a five-policy 
portfolio.

In this example, many solutions fall outside the Pareto-
optimal front.These are mathematically inferior because 
there are alternative solutions with both lower expected loss 
and higher premium. There is no logical reason a solution 
outside the Pareto-optimal front would be selected, based 

To determine the impact of the addition or removal of a 
particular policy on the expected losses of a portfolio, it is 
necessary to first calculate the total portfolio losses with 
and without that policy, and then re-compute the EP curve 
to examine the changes in loss levels and return periods. 
This type of analysis—known as marginal impact analysis—
is routinely conducted using AIR’s CLASIC/2™ software.

For example, suppose it is renewal season and we want 
to determine which policies should be renewed in order 
to achieve certain business objectives. For our two-policy 
portfolio, the marginal impact analysis will be quite simple, 
as there are only four possibilities for the construction of the 
portfolio: renew neither policy, discard Policy 1 and renew 
Policy 2, renew Policy 1 and discard Policy 2, or renew both 
policies. Let’s assume that we want to evaluate the resulting 
portfolio in terms of two simple metrics: the total premium 
and the total expected loss at 1% probability (100-year 
return period). The four choices can be labeled as 00, 01, 
10, and 11, with the first digit representing the first policy 
and the second digit representing the second policy. The 
symbol “0” represents non-renewal and the symbol “1” 
represents renewal of the respective policy.

After calculating the EP curves of the four choices, the 
premium and loss metrics can be represented in a graph, as 
shown in Figure 1. Note that solution 00 yields no premium 
and no loss since the portfolio is empty. Increasing the 
number of policies increases the premium, but also the loss. 
Note that in this example, renewing both policies results 
in a more efficient growth of premium (as indicated by 
the shallower slope from 00 to 11) than renewing just one 
policy. This is not always the case, and it is not possible to 
foresee whether this will be true for a given pair of policies 
before carrying out the actual computation. 

Figure 1. Pareto-optimal front and the four possible combinations of a two-
policy portfolio. 
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seconds on my computer at AIR). Multiplying this by the 
number of possible solutions yields the total time needed 
to exhaustively analyze all the possible choices, which 
is 2100 × 0.00279 seconds, approximately 3.54 × 1027 
seconds or 1.12 × 1020  years. As this is about 25 billion 
times the age of our planet (estimated at 4.5 billion years), 
it becomes apparent that the computational demands in 
performing portfolio optimization grow enormously for only 
a modest number of policies. Since most portfolios often 
contain hundreds or thousands of policies, the problem of 
exhaustively searching all combinations can be considered 
mathematically intractable.

GenetIc alGorIthms
In the 1970s, mathematician and computer scientist John 
Holland pioneered the use of genetic algorithms to solve 
search and optimizations problems. Borrowing concepts 
from Darwin’s theory of evolution and Mendel’s work on 
heredity, genetic algorithms are search techniques that 
rely on randomly driven explorations of the optimization 
space and are much like the mechanisms behind natural 
selection—whereby individuals of a given species that 
possess traits that enhance their chances of survival are 
more likely to pass down their genetic material to the next 
generation.

In developing genetic algorithms, Holland applied the 
fundamental steps that occur during evolution (selection, 
crossover, and mutation) to a computerized process.1 First, 
from a set of randomly generated candidate solutions, 
a well-performing subset of solutions is selected. During 
crossover, a new generation of solutions is created by 
combining the “genetic code” (represented using a binary 
string, as in previous examples) of different solutions. Often, 
this is done by mixing a fraction of one solution with a 
fraction of another to try to preserve the well-performing 
traits of the parent generation. In addition, some random 
mutations are introduced into the genetic code by switching 
several 0s into 1s or vice versa. Mutation rates are kept very 
low to prevent the destruction of well-performing groups 

only on the premium and loss criteria, because better 
performance can be achieved in both metrics. The main 
problem, however, is to identify those solutions that build 
the Pareto-optimal front. Which ones are they?

Marginal impact analysis usually leverages some additional 
information or hypotheses to avoid computing all the 
possible combinations of policies. For instance, if a company 
is not able to drop a large portion of the portfolio, many 
solutions can be eliminated and the number of actual 
candidates drops significantly.

Sometimes, there is little a priori knowledge to simplify the 
problem, and although it would be preferable to explore all 
possible solutions, marginal impact analysis is used, despite 
its known limitations, because computing all the potential 
combinations becomes intractable. Consider a portfolio 
with 100 policies. At first glance, this may not seem like 
such a challenge, but the number of possible combinations 
within such a portfolio rises to 2100, or 1.26 × 1030.

Such a number may be hard to grasp conceptually. You 
might recall the legend of the invention of chess, for 
example, in which the king asked the inventor what he 
wanted as a reward for creating such an ingenious game. 
The inventor replied: “one grain of wheat for the first 
square of the chessboard, double as much for the second, 
double as much for the next, and so on.” The king thought 
that such a trivial reward offended his generosity, but 
agreed to pay. Certain versions of the legend say that after 
discovering that the number of wheat grains for the last 
square totaled 263 (which would weigh over 450 billion 
tons, some 700 times greater than the present-day annual 
global wheat production), the king opted instead to chop 
off the inventor’s head.

Returning back to our portfolio optimization problem, a 
loss table—with the dimensions 100 × 10,000—can be 
computed as before. To calculate one EP curve for any 
given portfolio combination using an ordinary desktop 
computer only takes fractions of a second (about 0.00279 
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Figure 4. Production of a new solution through the simulated genetic process for 
a 10-policy portfolio 

Classical deterministic techniques like hill-climbing or 
steepest ascent can converge to a local optimum and 
become unable to escape unless an appropriate initial 
solution is chosen, as shown conceptually in the left panel 
in Figure 5. Evolutionary searches, on the other hand, due 
to their ability to “jump” through valleys in the objective 
function, are typically able to escape local maxima and 
continue the search of the optimization space, as shown 
in the right panel. Also, because genetic algorithms test 
the performance of different combinations of genes 
through many iterations, the space is searched efficiently. 
Combinations that result in poor performance are quickly 
pruned from the solution pool, and there is thus no need 
to scan all possible solutions. Consequently, a genetic 
algorithm can solve the 100-policy portfolio optimization 
problem in a matter of minutes with a standard desktop 
computer.

Figure 5. Conceptual comparison of deterministic hill-climbing techniques (left) 
vs. evolutionary searches (right) 

of “genes” (policy selections) in the potential solutions. 
This process, shown schematically in Figure 3, is reiterated 
several times, typically with each successive generation of 
solutions performing better than the previous. 

Figure 3. Fundamental operations in genetic algorithms: selection, crossover, and 
mutation. 

Applying genetic algorithms to the portfolio optimization 
problem, assume that in a portfolio of 10 policies, 20 
potential solutions were created at random. Out of these, 
two of the best performing ones—say 0001001010 and 
0110001110—are combined at a random point in the 
binary string—say after the fourth policy. The crossover 
operation takes the first four digits from the first solution 
and combines it with the remaining six digits from the 
second, resulting in 0001001110. The mutation operation 
then switches a few genes at random—say in this case, 
the tenth policy is switched from 0 (reject) to 1 (accept). 
The final solution after the genetic construction process is 
0001001111, which represents a portfolio that contains 
Policies 4, 7, 8, 9 and 10. This process, shown graphically in 
Figure 4, is done for other combinations of well-performing 
portfolios to create a new generation of solutions. This new 
generation of solutions is then tested and the selection, 
crossover, and mutation process is reiterated until the best 
solution is found or until some performance criteria are 
met.
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case study
A primary insurance company in Florida with a portfolio 
of properties distributed throughout the state wants to 
explore underwriting strategies that can help them attain 
several objectives, discussed below. Their total portfolio 
consists of more than 50,000 policies—1,000 of which are 
up for renewal next month (the remaining 49,000 policies 
are considered their static portfolio). They perform the 
following portfolio optimization exercises

Maximize Risk-Based Return (RBR)
In this first exercise, the company wishes to maximize 
their overall risk-based return (RBR) by selecting a subset 
of policies from the 1,000 that are up for renewal. They 
define RBR as total premium divided by the expected annual 
loss with an exceedance probability of 1%. The company 
uses three methodologies: policy ranking, steepest ascent, 
and AIR’s evolutionary search algorithms. All three reach a 
similar solution, namely that the company should renew a 
subset of about 700 polices, while dropping the remaining 
ones that were responsible for decreasing the RBR into a 
state wind pool.

Figure 6. Maximizing risk-based return using three algorithms—AIR, steepest 
ascent (SA), and policy ranking (PR). 

Maximize RBR While Limiting Expected Losses
In the second exercise, they again wish to maximize 
RBR, but while also constraining expected losses at the 
1%, 0.4%, and 0.2% exceedance probability levels. This 
problem is more complex because the three constraints 
severely limit the potential combinations of policies, and 
the consideration of the loss correlation between the 
policies within a portfolio becomes a critical issue. The 

company applies the same three methodologies as before. 
Policy ranking and steepest ascent yield similar solutions, 
but AIR’s evolutionary search algorithms deliver a solution 
that outperforms the others by yielding a 13% premium 
increase.

Figure 7. Maximizing risk-based return while limiting expected losses—AIR, 
steepest ascent (SA), and policy ranking (PR)  

The underwriting team plots the locations of the policies 
and finds that the solutions from deterministic algorithms 
involve selecting policies that are geographically different 
than those from AIR’s search. For instance, the SA and 
PR solutions would lead to dropping policies around the 
Tampa, Central Florida, and Northern Florida areas. In 
contrast, the solution obtained using AIR’s algorithms 
suggests that keeping most of the policies in these areas 
while dropping some around the Miami-Dade area would 
yield a higher premium and keep the expected losses below 
the desired level

Figure 8. Comparison of policy locations based on the different algorithms 



aircurrents 
01.11|portfolio optimization for insurance companies

By Dr. guillermo franco

7

Maximize Premium and Limit Reinsurance Costs
In the third exercise, the company wishes to keep their 
reinsurance costs—which they calculate based on the 
tail value at risk (TVaR) of the entire portfolio—under a 
certain threshold. They optimize the portfolio using both 
the steepest ascent methodology and AIR’s algorithms. 
They discover that AIR’s algorithms provide a solution that 
yields 56% more premium than the deterministic algorithm 
solution, while keeping reinsurance costs at approximately 
the same level.

Figure 9. Maximizing premiums while limiting reinsurance costs—AIR and 
steepest ascent (SA)

Conclusion
The company in Florida, based on these numerical tests, 
concludes that while deterministic techniques may be 
suitable for handling simple problems with few or no 
constraints, the need to account for policy loss correlation in 
complex constrained scenarios requires advanced analytical 
custom solutions. They also discover that performance in 
underwriting and risk management can be enhanced with 
the help of computerized decision analytics.

Further readInG
For more information on the application of evolutionary 
concepts to computation, refer to “Adaptation in Natural 
and Artificial Systems” by John Holland. For more details 
about genetic algorithms, refer to “Genetic Algorithms in 
Search, Optimization, and Machine Learning” by David E. 
Goldberg.

aIr’s portFolIo optImIzatIon solutIons
AIR has developed several techniques to approach 
optimization problems that were previously deemed 
too complex to be handled in a systematic, automated 
fashion. This allows portfolio managers to consider multiple 
business objectives when determining renewal strategies 
that accommodate their underwriting guidelines and their 
overall approach to enterprise risk management.

AIR currently offers portfolio optimization solutions on a 
consulting basis. Please contact us if you would like more 
information.
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about aIr WorldWIde
AIR Worldwide (AIR) is the scientific leader and most respected provider of risk modeling 
software and consulting services. AIR founded the catastrophe modeling industry 
in 1987 and today models the risk from natural catastrophes and terrorism in more 
than 50 countries. More than 400 insurance, reinsurance, financial, corporate, and 
government clients rely on AIR software and services for catastrophe risk management, 
insurance-linked securities, detailed site-specific wind and seismic engineering analyses, 
agricultural risk management, and property replacement-cost valuation. AIR is a member 
of the Verisk Insurance Solutions group at Verisk Analytics and is headquartered 
in Boston with additional offices in North America, Europe, and Asia. For more 
information, please visit www. air-worldwide.com.
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