
and problems in which outcomes are partly stochastic and partly 

under the decision-maker’s control. MDPs are framed as: 4-tuple 

[S,A,P(∙,∙),R(∙,∙)]

where:

 4-tuple indicates that the problem is an ordered repeating set 

consisting of 4 elements;

 S denotes a finite set of states;

 A represents a finite set of actions available in a given state;

 P indicates probabilities with respect to S and A such that:

 the expression P(s,s’)=P(st+1= s’|st=s,at=a) is the probability that 

action a in state s at time t will lead to state s’ at time t + 1;

 and R—expressed as above: R(s,s’)—is the expected immediate 

reward (reinforcement) received after executing action a in 

state s and transitioning into state s’.

These relationships are illustrated schematically in Figure 1.

Artificial Intelligence (AI) techniques can be used to design and 

build intelligent “agents” that can accomplish specific tasks 

efficiently. AIR is pioneering the application of AI techniques to 

solve portfolio optimization problems for the insurance industry 

using a branch of AI known as Reinforcement Learning (RL). RL 

methodologies are commonly used in the field of robotics, but 

they are also being adapted and applied to address large-scale and 

complex optimization problems. 

SEQUENTIAL DECISION-MAKING
Central to achieving a satisfactory solution to a practical problem 

is deciding how to frame the problem. The portfolio optimization 

problem is frequently formulated as a “0-1 knapsack problem,” 

which is a type of “NP-hard problem” (Non-deterministic 

Polynomial-time-hard problem, the most complex problem category 

in computational complexity theory). 

Common risk metrics such as“tail value at risk” (TVaR) and 

“average annual loss” (AAL) are used by insurance companies to 

measure the marginal impact of adding a policy into a portfolio. 

While marginal impact is a good proxy for the short-term 

implications of deciding to write a policy, it does not reveal long-

term implications, such as the adverse effect of stacking a portfolio 

with highly correlated policies.

AI techniques, however, can take both the short- and long-term 

implications of decisions into account and can also bring some 

measure of automation to the policy selection process. To use 

the AI techniques discussed here, portfolio optimization needs to 

be formulated as a sequential decision-making problem—or, still 

more specifically, as a Markov Decision Process (MDP). An MDP is a 

mathematical framework for modeling decision-making processes 
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the portfolio optimization problem is known as the “Q-Learning 

algorithm.”2  Q-Learning, like many other RL algorithms, stems 

from dynamic programming, which makes use of Bellman 

Optimality Equations, which take the form:

The utility of the Bellman equations is their ability to achieve state-

action optimality. In these equations, γ is the discount factor for 

future rewards and Q* (s,a) is the value of the optimal action a that 

maximizes (or minimizes) the expected immediate reward in state s.

In effect, however, RL algorithms adapt the Bellman Optimality 

Equations into a kind of update rule for the iterative improvement 

of desired value functions. This “update rule” for basic Q-Learning 

is a derivative of Equation 2 above and is expressed as follows:

Figure 2 adapts the basic Markov Decision Process schematic in 

Figure 1 to illustrate how the Q-Learning framework is applied to 

the insurance portfolio optimization problem.

The basic Markov Decision Process framework is simple: a decision-

making agent acts on its environment, receives feedback on 

whether the action had a positive or negative effect, and selects 

and executes successive actions one after another (at) until a pre-

determined stopping condition is met. 

Information about the environment is automatically communicated 

to the decision-making agent (DMA) with each new t + 1 iteration 

of an executed action (St + 1). Based on the new state of the 

environment, the decision-making agent executes an action that 

causes the environment to transition into a new state in keeping 

with the transition probabilities, P(s,s’). Following this action, the 

decision-making agent receives a reward or reinforcement (Rt), that 

reflects the desirability of the new state.

Insurance companies examine common risk metrics such “tail value 

at risk” (TVaR) and “average annual loss” (AAL) to measure the 

marginal impact of adding a policy into a portfolio. While marginal 

impact is a good proxy for the short-term implications of deciding 

to write a policy, it does not reveal long-term implications, such 

as the adverse effect of stacking a portfolio with highly correlated 

policies. AI techniques, however, can take both the short- and long-

term implications of decisions into account and can also bring some 

measure of autonomy to the policy selection process.

ARTIFICIAL INTELLIGENCE FRAMEWORK
The Reinforcement Learning framework makes possible the use 

of automated optimal decision-making capabilities in uncertain, 

dynamic environments—such as changing insurance companies’ 

risk profiles. The particular RL algorithm that was used to address 

Figure 2. Interaction of the decision-making agent (Markov Decision Process) 
with an insurance portfolio optimization environment (Source: AIR)

Figure 1. Basic Markov Decision Process (MDP) (Source: AIR)
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In Figure 2, the “environment” is a portfolio or set of portfolios 

and the “decisionm-making agent” is a Q-Learning application. 

The MDP executes a policy selection decision—which immediately 

changes the state of the (portfolio/policy) environment. That new 

“state” is conveyed back to the MDP—along with the “reward” 

information as to whether the change advances toward (or away 

from) the optimization goal.

ACCOMMODATING UNCERTAINTY
Both the occurrence and frequency of catastrophic events are 

uncertain, as are the intensity of the events and the damage 

and loss caused by them. A solution methodology that is able to 

account for this uncertainty—without having to make unrealistic 

simplifying assumptions—will give decision makers a competitive 

advantage.

The Q-Learning technique outlined above is neither too 

sophisticated for a non-specialist user to understand and implement 

nor unduly limited in its ability to address challenging complex 

optimization problems. And, the Q-Learning framework has the 

ability to handle uncertainty, which is probably its most important 

advantage.

Q-Learning is considered to be one of the most important 

breakthroughs in Reinforcement Learning. Q-Learning operates, in 

effect, by “looking” one step ahead (or more, depending on the 

problem). In this way, the value of an action a in state s at time t 

converges toward the value of the action that consistently yields 

the maximum reward in the new state, st+1=s’, that the environment 

transitions into at time t + 1.

This iterative process is illustrated in Figure 3.

The decision-making agent (Markov Decision Process) in Figure 3 

receives portfolio performance information (Step 1) and, based 

on that information, selects  the “best fit” policy from a pool of 

available policies (Step 2). That selection changes the state of the 

portfolio, and that new state—along with the valuation that it is 

desirable or not—is conveyed back to the decision-making agent 

(Step 3). Finally, valuation and new state information is stored and, 

a new selection is made (Step 4).

Importantly, the logic of this algorithm allows Q-Learning to operate 

without having to employ the transition probability and immediate 

reward information that have been used in dynamic programming. 

These probability and reward factors have often been criticized as 

being unrealistic, thus rendering whatever solution methodologies 

the algorithm arrives at as impractical.

A CASE STUDY
An experimental case study was undertaken to compare the 

performance of the Q-Learning portfolio-optimization method with 

that of other heuristic algorithms, namely Genetic Algorithms (GA) 

and Stochastic Steepest Ascent (SSA). The data for this case study 

consisted of 500 policy groups from a residential book in Florida. 

The premise was that an insurer wanted to identify policy groups 

suitable for incorporation into its overall portfolio. The insurer also 

wanted to be able to minimize its exposure while achieving, at the 

least, a threshold level of premium.

The total premium and TVaR for the entire book were USD 

26,074,040 and USD 104,164,319, respectively. This simply means 

that the TVaR risk metric ranges from 0—if the insurer does not 

write anything—to USD 104,164,319—if the insurer writes all of 

the available policy groups—while the amount of premiums that 

can be collected ranges from 0 to USD 26,074,040. To produce 

a profit, the insurer needs to collect at least USD 8,500,000 in 

premiums.

This situation describes an optimization problem for which the goal 

is to minimize the objective function of TVaR while satisfying the 

constraint: PremiumTOTAL≥USD 8,500,000.

Figure 3. Idealized Q-Learning iterative cycle in execution (Source: AIR)



Because of the stochastic nature of all three optimization methods, 

the performance comparison between them was conducted as a 

single-factor two-level experiment that was run 50 times. The mean 

and standard deviation of the TVaR produced by each method 

were determined and a confidence interval was computed for the 

difference in the TVaRs between Q-Learning and GA, the two best-

performing approaches, to quantify how much the expectations 

differ.

The statistical parameters of the final TVaR values for all three 

methodologies are listed in Table 1, while Figure 4 presents the 

minimum TVaR yielded by each method after each run.

The confidence interval for the paired difference between the TVaRs 

yielded by the Q-Learning and the GA is 98%. In other words, 

98% of the time the Q-Learning yielded TVaR values between USD 

567,934 and 411,203 less than those produced by the GA.

The significance of this difference is that the Q-Learning approach 

yields a better result.

CONCLUSION
Reinforcement Learning techniques, by virtue of their ability to 

adapt to a stochastic environment, have the potential to advance 

the insurance portfolio optimization task by delivering superior 

solutions in the face of uncertainty. Tested against the commonly 

used Genetics Algorithm in optimizing a book of policy groups, 

Q-Learning was found to deliver statistically significant superior 

TVaRs while achieving similar premium levels.

Figure 4. Benchmarking performance (Source: AIR)

1See “Portfolio Optimization for Insurance Companies,” January 2011; “Portfolio Optimization for Reinsurers,” March 
2012; “Managing Wind Pool Risk with Portfolio Optimization,” June 2012. 

2For more information on Q-Learning, see “Reinforcement Learning:  An Introduction” by Richard S. Sutton and Andrew 
G. Barto. 
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MEAN
(USD)

STD. DEVIATION 
(USD)

Q-LEARNING 
FRAMEWORK

7,423,433 19,645

GA 7,913,001 26,701

SSA 8,269,521 43,060

Table 1. Statistical parameters of the final TVaR values


