
WHAT IS PARTIAL CORRELATION?
Consider a portfolio consisting of two reinsurance contracts with 

ten-year losses, L1 = [35.2, 39.4, 90.8, 2.1, 43.7, 94.1, 18.6, 98.7, 

39.6, 45.5] and L2 = [43.9, 57.0, 35.9, 26.7, 42.2, 1.0, 3.3, 62.3, 

64.8, 11.3], and participations X1 and X2, respectively. The combined 

portfolio loss L is then a linear combination of the individual contract 

losses and their respective participations: L = X1*L1 + X2*L2

Suppose that the pertinent risk metric is the 70% TVaR. If the 

individual contract losses were perfectly correlated, the portfolio TVaR 

(T70%) would be a linear function of the individual contract TVaRs and 

their respective participations, that is: T70% = X1*T1 + X2*T2 where 

T1 = 94.5 and T2 = 61.4 are the 70% TVaRs for contracts 1 and 2, 

respectively. Restricting X2 = 1 - X1 for simplicity, this produces the 

linear function of T70% against X1 shown by the blue line in Figure 1. 

However, because the losses are generally only partially correlated 

between contracts in actual portfolios, TVaR is nonlinear with respect 

to X1 and X2, and must be evaluated for each separate 

combination of X1 and X2. This is done by first computing the 

combined losses L, ranking them, and then computing the TVaR from 

the resulting ranked losses. This process produces the convex green 

line in Figure 1.

modeled contract losses. This means that simulated events that 

cause high losses to one contract within a portfolio do not 

necessarily cause high losses to other contracts. This can be the 

case for a number of reasons, including geographic distance and 

dissimilarity in vulnerability of the underlying exposure. See the text 

box below for a simple example.

INTRODUCTION
A common, if not universal, business objective for reinsurers is 

the maximization of a revenue metric such as premium (P), or 

minimization of a risk metric such as Tail Value at Risk (TVaR), or 

optimization of some composite metric such as P/TVaR, while 

simultaneously satisfying multiple constraints imposed by capital, 

market and business requirements.

This optimization is achieved through judicious control of the 

participation levels of the company’s portfolio of contracts. The 

selection of the appropriate contract-participation levels to optimize 

the desired combination of metrics constitutes an optimization 

problem encapsulating two difficulties—one mathematical and the 

other computational—which render its solution process a non-trivial 

challenge.

The mathematical difficulty arises from the fact that the standard 

risk metrics are typically nonlinear with respect to the contract 

participations as a result of partial correlations between the 
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depends on the initial starting point and it subsequently searches a 

progressively more restricted solution space in successive iterations 

until it converges to the nearest local optimum. Consequently, 

unless the global optimum fortuitously happens to also be the 

local optimum nearest to the selected starting point, a hill climbing 

analysis will also produce a suboptimal solution.

Stochastic search methods such as genetic algorithms and 

evolutionary search are the most advanced methods currently 

available and are particularly suited to problems of this nature. 

These algorithms were developed by mathematician John Holland 

in the 1970’s to solve certain classes of mathematical optimization 

problems by simulating the natural-selection process in evolutionary 

biology (see Holland, 1992 for further reading). Genetic algorithms 

and evolutionary search operate on the following general 

framework:

1. Initialization: randomly generate an initial population of solutions

2. Reproduction: produce a new generation of solutions (offspring) 

from the initial population (parents) by randomly combining 

information from randomly selected pairs of parents

3. Mutation: induce random mutation in the offspring

4. Ranking: evaluate the fitness of each solution and rank them from 

best to worst

5. Selection: cull the least fit offspring and retain the most fit ones to 

serve as the parents for the next generation

6. Iteration: repeat Steps 2–5 until some exit criterion, such as 

maximum iteration count or fitness threshold level, is met

7. Termination: save the best solution found and exit

Stochastic search algorithms, by virtue of their stochastic nature, 

are able to overcome the disadvantages of the policy ranking 

and hill climbing methods to provide a superior capability of 

locating the global optimum. On the other hand, they are more 

computationally intensive than the simpler methods, and thus more 

time consuming. (A more detailed description of genetic algorithms 

may be found in Goldberg, 1989.)

AIR utilizes the entire range of available optimization methods to 

efficiently find the best solutions. The simpler methods complement 

the more advanced ones by providing a first-order approximation of 

the solution that can then be used to improve the starting point for 

the more advanced methods.

UNCERTAINTY ANALYSIS
The challenge of finding, attaining and maintaining an optimal 

reinsurance portfolio is further complicated by multiple sources 

of uncertainty in the process. These uncertainties affect both the 

location of the optimal solution itself and the ability of the portfolio 

manager to attain the optimal operating point. Consequently, 

it is not sufficient to merely identify the optimal solution; a 

This nonlinearity greatly increases the mathematical complexity of 

the portfolio optimization analysis wherever TVaR or similar risk 

metrics are a component of either the objective function or the 

constraints.

The computational difficulty arises from the size of the space 

in which the search for the optimum solution must take place. 

In the above example, if we discretize the 0 – 100% potential 

participation range for each contract into 2-percentage-point steps, 

we obtain 100/2 = 50 discrete steps for each contract and a total of 

502 = 2,500 possible participation combinations for the portfolio. 

This is a trivially small solution space relative to today’s computing 

power and it would be a simple matter to exhaustively compute the 

losses for every combination in order to identify the one with the 

minimum TVaR. However, the solution space grows exponentially 

with the number of contracts. A typical reinsurance portfolio can 

contain as many as 500 contracts, each with a 10,000-year loss 

vector, which produces a vastly larger solution space with 50500 = 

3.1 × 10849 possible combinations. This exceedingly large space, 

coupled with the greatly increased loss-vector length, makes it 

infeasible to exhaustively compute all the possible combinations. 

In fact, the required computation time with the fastest available 

computer would exceed the age of the universe by many orders of 

magnitude.

OPTIMIZATION
As a result of these mathematical and computational difficulties, 

reinsurance portfolio optimization demands a more systematic 

approach to efficiently locate the optimum in the solution space. 

Methods currently available range from simpler algorithms such 

as policy ranking and hill climbing to more advanced heuristic 

techniques such as genetic algorithms and evolutionary search.

In policy ranking, the contracts are ranked by the metric of interest 

and added to the portfolio one at a time, starting with the best, 

until the first constraint is reached. This is a simple and intuitive 

method of portfolio contract selection requiring only a minimal 

computational effort. However, it does not account for the less-

than-perfect correlations between the modeled losses and will 

therefore most likely produce a suboptimal solution.

Hill climbing methods, such as steepest ascent, start at a given 

point in the solution space and explore the surrounding region 

to find locations that improve performance. It then moves to the 

best solution among those and repeats the process until it can 

no longer find any improvement in the local neighborhood. This 

method will generally deliver a superior result relative to policy 

ranking. However, its disadvantage is that the final solution critically 



MARCH 2012 | PORTFOLIO OPTIMIZATION FOR REINSURERS
BY SIEWMUN HA, PH.D.

EDITED BY NAN MA

3

comprehensive reinsurance portfolio management approach must 

also account for these uncertainties in the analysis so that the 

resulting variation around the optimal solution can be identified 

and quantified to provide the portfolio manager with a complete 

stochastic view of the process of adjusting the portfolio from its 

initial state to its optimal state.

Some examples Include:

•	 Uncertainty in the choice of risk measure due to 

operational ambiguity, which arises from multiple possible 

choices in the problem formulation. The sensitivity to risk measure 

choice may be evaluated by reanalyzing the portfolio with different 

risk measures and evaluating the change in the optimal solution 

with each selected risk measure.

•	 Uncertainty in attainable contract participations due to 

market and business restrictions, which represents a form 

of noise over the control of the portfolio and makes it improbable 

that the exact optimal solution can actually be attained. This 

naturally raises the question: How close can I get to the 

optimal solution? The sensitivity to this noise may be evaluated 

by conducting a Monte Carlo simulation to estimate the joint 

confidence intervals for the premium and losses around the optimal 

solution.

•	 Uncertainty in modeled losses due to catastrophe model 

limitations, which represents a form of noise over the inputs to 

the problem and it results in a corresponding uncertainty in the 

losses at the optimal solution. The sensitivity to this noise may again 

be evaluated through a Monte Carlo simulation to estimate the loss 

confidence interval at the optimal solution.

SOLUTION ROBUSTNESS
The solution space to an optimization problem may, in general, 

contain multiple local optima in addition to the global optimum 

(Figure 2). From a practical business perspective, the absolute global 

optimum may not necessarily be the best solution if prevalent 

uncertainties in participations and modeled losses make it difficult 

to attain or maintain the exact desired optimum operating point. 

Such a solution is not robust, meaning that a small deviation from 

the optimum operating participations can result in a significant 

performance degradation in the desired metric (Point A in Figure 2).

It may thus be better to accept a lower level of performance (Point 

B in Figure 2) in exchange for an increased level of robustness. 

To make an informed decision on the performance-robustness 

tradeoff, it is necessary to map the solution space to identify the 

location of each optimum and its surrounding topography. This 

may be accomplished by employing a Tabu search algorithm in 

conjunction with one of the standard optimization algorithms 

discussed earlier. The Tabu search process works by systematically 

directing the coupled optimization algorithm to search the solution 

space for multiple optima over successive iterations to produce 

the desired map. Hillier and Lieberman (2010) provide additional 

information on Tabu search.

CASE STUDY
The optimization and uncertainty concepts discussed in the previous 

sections are illustrated here in a case study of a hypothetical 

reinsurer with a small portfolio of U.S. contracts.

INTRODUCTION
Hutan Re, a major reinsurance company, possesses a small U.S. 

reinsurance portfolio with 12 regional contracts covering hurricane, 

severe thunderstorm and winter storm risks. The basic parameters 

of the current portfolio are summarized in Table 1. Current 

contract participations range from 4.1% to 9.7% and business/

market restrictions impose upper and lower limits on individual 

contract participations. Current premiums for the contracts range 

from $0.5M to $37M. Participations for Contracts 3, 7 and 8, 

which belong to clients who are considered critical, cannot be 

altered. Hutan uses tail value at risk (TVaR) at the 1% exceedance 

probability as its primary risk metric. The current portfolio’s total 

premium and TVaR are $101.5M and $49.4M, respectively.

Table 1. Hutan Re baseline reinsurance portfolio

Contract 
ID

Current 
Participation

Minimum 
Participation

Maximum 
Participation

Premium 
($M)

1 4.07% 1.9% 9.1% 3.0

2 6.19% 1.2% 11.4% 4.7

3 8.06% 8.1% 8.1% 3.3

4 5.41% 1.2% 9.4% 20.9

5 6.59% 4.7% 10.4% 5.0

6 9.02% 4.0% 11.9% 5.9

7 4.84% 4.8% 4.8% 0.59

8 7.07% 7.1% 7.1% 0.51

9 8.56% 2.1% 10.9% 37.0

10 9.65% 4.0% 11.5% 11.2

11 6.63% 3.1% 10.6% 1.1

12 4.74% 2.7% 8.0% 8.2
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Figure 2. Solution robustness: global optimum (A) vs. local optimum (B)



MARCH 2012 | PORTFOLIO OPTIMIZATION FOR REINSURERS
BY SIEWMUN HA, PH.D.

EDITED BY NAN MA

4

Hutan is about to renew its portfolio and the portfolio manager 

is interested in investigating the following issues to inform his 

decisions:

1. How much additional premium can Hutan obtain if the current 

portfolio is optimized with the risk capped at its current level?

2. Where, in the TVaR-premium space, does the best risk-return 

tradeoff occur?

3. What if, contrary to the current paradigm, the critical clients are 

assumed to be NOT critical and the participation constraints on 

Contracts 3, 7 and 8 are relaxed?

4. How does the optimum portfolio change if the modeled losses for 

contracts 1, 4, 8 and 11 increase by 30% due to catastrophe model 

updates?

5. What if ALL the modeled losses contain an inherent uncertainty in 

the range of ±30%?

6. What is the effect of a participation uncertainty of ±2 percentage 

points (PP) on the optimal solution?

PROBLEM FORMULATION
The issues posed by scenarios 1 – 4 constitutes an optimization 

problem to maximize the premium (objective function) by 

controlling the contract participations (decision variables), while 

subject to constraints on the participations themselves and also the 

TVaR, which is a function of the participations and modeled losses. 

The problem may be stated formally as:

Maximize:

PT = ∑(Xi*Pi) Objective function

Subject to

ai < Xi < bi Participation 

constraints

TVaR(L) < Tmax TVaR constraint

L = ∑(Xi*Li) Portfolio loss 

function

Where

PT = total portfolio 

premium

TVaR(L) = portfolio 

TVaR function

Xi = contract i 

participation level

Tmax = maximum 

allowable TVaR

Pi = contract i 

maximum  premium

L = portfolio loss 

vector

ai = contract i 

minimum participation

Li = contract i loss 

vector

bi = contract i 

maximum participation

ANALYSIS RESULTS
AIR programmed a customized evolutionary search algorithm to 

answer the questions posed by Hutan’s portfolio manager. The 

uncertainty analyses for scenarios 5 – 6 were addressed through 

a Monte Carlo simulation program coupled with the main 

optimization algorithm. The results for the first three considerations 

are plotted on a premium-TVaR plane in Figure 3. The current 

baseline portfolio is marked by the red “X”. Optimizing the baseline 

portfolio with the risk capped at its original level ($49.4M) produces 

an optimized portfolio with an additional ΔP = $26.7M in premium.

The baseline Pareto-optimal front is obtained by repeating the 

optimization over the feasible range of risk levels and is represented 

by the green line (S-2). This represents the range of the best 

possible risk-premium tradeoffs for the baseline portfolio. It is 

pertinent to note that the concave curvature of the front implies 

that the best risk-premium tradeoff occurs at the lower end of 

the risk range and it becomes progressively worse as more risk is 

written.

Relaxing the critical-client assumption on Contracts 3, 7 and 8 shifts 

the Pareto-optimal front upwards to the position of the blue line 

(S-3) in Figure 3. This indicates that more premiums are obtainable 

at every level of risk by exploiting the extra degrees of participation 

freedom made available by the relaxation of the constraints. At 

the baseline TVaR of $49.4M, the improved front (S-3) offers an 

increased premium of $5.1M compared to the optimized baseline 

(S-2). This represents the effective opportunity cost of maintaining 

the status of these clients as critical.

Figure 3. Reinsurance portfolio optimization scenario results
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For scenario 4, repeating the optimization using +30% revised loss 

estimates for Contracts 1, 4, 8 and 11 shifts the Pareto-optimal 

front down to the position of the black line (S-4) in Figure 3. In this 

case, the increased losses force a reduction in the written risk to 

satisfy the TVaR constraint and consequently reduces the obtainable 

premium along the entire range of the Pareto-optimal front. At 

the baseline TVaR of $49.4M, this reduction amounts to $7.0M, 

representing the opportunity cost imposed by the modeled loss 

uncertainty.

For scenario 5, a Monte Carlo simulation was applied to the 

computation of the TVaR along the baseline Pareto-optimal front to 

evaluate the effect of a random ± 30% uncertainty in the complete 

set of modeled losses with contract participations kept constant. 

The modeled loss uncertainty produces a corresponding distribution 

of TVaR values at each point on the Pareto optimal front. Figure 

4 shows one such distribution around the TVaR = $49.4M point, 

corresponding to the optimized baseline portfolio. Note the non-

intuitive result that the distribution is asymmetrical around the 

baseline TVaR value, with the baseline TVaR itself located near the 

lower tail end of the distribution. This stems from the mathematical 

structure of the TVaR definition, which incorporates an inherent 

positive bias with respect to uncorrelated random variation in the 

modeled losses.

In this particular case, there is a 93.7% probability that the 

modeled loss uncertainty will produce a TVaR that is up to $13.4M 

higher than the baseline value. The maximum probability of the 

distribution, i.e., most probable TVaR value, corresponds to TVaR ≈ 

$54.5M, an increase of $5.1M over the baseline value. Repeating 

the Monte Carlo simulation along the entire Pareto-optimal front 

produces the corresponding confidence interval shown in Figure 5. 

Finally, for scenario 6, a second Monte Carlo simulation was applied 

to evaluate the effect of a ±2 percentage-point participation 

uncertainty on both TVaR and premium for the optimized 

baseline portfolio. Here, the participation uncertainty produces a 

corresponding two-dimensional joint probability distribution for 

TVaR and premium. This is illustrated in Figure 6 with the color-

coded confidence intervals around the optimized baseline portfolio 

marked by the blue “X”. Figure 7 shows the three-dimensional 

perspective view of the same confidence intervals. Each zone’s color 

code correlates with the probability of the portfolio’s final location 

in the premium-TVaR plane occurring in that zone as a result of 

participation uncertainty.
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The individual probabilities for the white, yellow, orange, red and 

black zones are 40%, 30%, 20%, 10% and 0%, respectively. 

Mapping the zone probabilities to their respective TVaR and 

premium ranges then defines the following cumulative confidence 

intervals due to the participation uncertainty, as shown in Table 2.

Table 2. Cumulative confidence intervals due to participation 

uncertainty

Figure 6 Zone Color Code TVaR
Confidence 

Interval

Premium
Confidence 

Interval

Confidence 
Level

White $46.9M < T < 
$51.7M

$122M < P < 
$137M

40%

White + Yellow $46.4M < T < 
$52.7M

$115M < P < 
$140M

70%

White + Yellow + 
Orange

$44.9M < T < 
$53.7M

$112M < P < 
$143M

90%

White + Yellow + 
Orange + Red

$42.5M < T < 
$56.6M

$106M < P <  
$151M

100%

CONCLUSION
Hutan Re gained the following insights from AIR’s analysis of their 

portfolio:

1. Optimizing their current baseline portfolio delivers an additional 

$26.7M in premium for the same level of risk

2. The Pareto-optimal front, representing the range of best possible 

risk-return tradeoffs, occupies the range $27.3M < TVaR < $68.3M 

and $36.2M < P < $148M. Incremental risk delivers decreasing 

premium as more risk is written

3. Maintaining the critical clients at their current contract participation 

levels incurs an opportunity cost of $5.1M

4. A +30% revision in the modeled losses for Contracts 1, 4, 8 and 

11 reduces the premium along the Pareto-optimal front, with the 

reduction increasing as less risk is written. The premium reduction 

amounts to $7.0M for the optimized baseline portfolio

5. A ±30% uncertainty in all the modeled losses produces a 93.7% 

asymmetrical confidence interval of $13.4M on the positive side of 

the optimized baseline TVaR value

6. A ±2 percentage-point uncertainty in the contract participations 

produces a two-dimensional confidence interval around the 

optimized baseline. At the 90% confidence level, $44.9M < TVaR < 

$53.7M and $112M < P < $143M

With the optimization framework and model established, Hutan 

is now also positioned to evaluate revised scenarios and/or 

combinations of scenarios as the need arises.
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ABOUT AIR WORLDWIDE
AIR Worldwide (AIR) is the scientific leader and most respected provider of risk modeling 

software and consulting services. AIR founded the catastrophe modeling industry in 1987 

and today models the risk from natural catastrophes and terrorism in more than 90 countries. 

More than 400 insurance, reinsurance, financial, corporate, and government clients rely on AIR 

software and services for catastrophe risk management, insurance-linked securities, detailed 

site-specific wind and seismic engineering analyses, agricultural risk management, and property 

replacement-cost valuation. AIR is a member of the Verisk Insurance Solutions group at Verisk 

Analytics (Nasdaq:VRSK) and is headquartered in Boston with additional offices in North America, 

Europe, and Asia. For more information, please visit www. air-worldwide.com.


