
The AIR Multiple 
Peril Crop Insurance
Model for China

Participation in China’s Multiple 
Peril Crop Insurance (MPCI) 
program has dramatically 
increased since 2007, when 
government-funded premium 
subsidies were expanded. The 
growth in insurance penetration, 
together with complex and 
evolving policy conditions, means 
that relying on historical losses to 
understand risk of future losses is 
insufficient. The AIR MPCI Model 
for China uses a probabilistic 
approach to provide an up-to-date 
view of the risk of losses arising 
from perils covered under China’s 
agricultural insurance program.
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A primary distinction between 
agricultural insurance and most other 
insurance lines is the often widespread 
geographic correlation of losses—
the result of large-scale adverse 
weather events. In mainland China, 
extreme weather is to blame for 90% 
of crop losses; the financial impact is 
significant. AIR estimates that a repeat 
of the 2000 drought would cost crop 
insurers more than CNY 20 billion 
(USD 3 billion) today. Thus, in order to 
quantify the potential gains and losses 
to a crop insurance portfolio, it is critical 
to quantify the impact of weather.

China is a leading global producer of wood and paper products; 
the country’s forests can be insured under the national crop 
insurance scheme and incur large losses not only from extreme 
weather but also fire, pests, and disease. In addition, livestock 
(including poultry) policies now make up about a quarter of 
agricultural premiums in the country and have a large potential 
for losses due to weather and disease. To get a comprehensive 
view of agricultural risk in China, companies must consider the 
risk to crops, forests, and livestock.

AIR’s Approach to Modeling Agricultural Losses 
Offers Companies Multiple, Comprehensive 
Views of Their Risk
In 2011, AIR leveraged its considerable experience and success 
in modeling MPCI portfolios in the United States to develop a 
model for mainland China. Since then, we have updated the 
model several times to keep it current with the fast-changing 
Chinese agricultural insurance market. The AIR MPCI Model for 
China captures the severity, frequency, and location of drought, 
flood, wind, frost, and heat events nationwide covering over 
90% of the weather-related crop losses. In addition, AIR models 
losses to forests due to fire, wind, pests, disease, and rodents, 
as well as losses to livestock due to weather and disease.

AIR is dedicated to user flexibility, offering companies multiple 
views of their risk. Regular model updates ensure that analyses 
reflect the latest available weather, exposure, and policy 
condition information. Into each update, AIR incorporates new 
exposure data from the China Statistical Yearbook and new 
policy condition information from the industry. Clients can 
generate custom results by using peril and line-of-business 
filters, as well as by adjusting premium rates and sum insured 
per mu. In addition, the model provides a 10,000-year stochastic 
event catalog and a historical event set from 1981 to 2018 
(through 2015 for forestry).
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The growth in both premiums and 
claims arising from China’s crop 
insurance program highlights the 
importance of modeling the impact 
of adverse weather events on China’s 
cropland. (Sources: National Bureau of 
Statistics of China, China Banking and 
Insurance Regulatory Commission)
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Accounting for the Major Crops Covered by 
Insurance
The AIR MPCI Model for China estimates damage to all 
crops with federal subsidies for crop insurance premium: 
corn, cotton, rapeseed, rice, soybean, wheat, barley, peanut, 
potato, sugar (includes cane and beet sugar), and rubber—
the country’s major crops. The severity of crop damage—
and the insured losses that result—can vary depending on 
which phase in the growing season an extreme weather 
event occurs. Insurance policy conditions in China cover 
crop production costs up to the time of damage, thus 
payouts are directly correlated to the crop’s stage of 
development. At the start of a crop’s growing season, for 
example, farmers have invested limited time and money; 
thus, if an extreme weather event occurs, the potential 
losses to the insurer are limited. As the season continues, 
however, the potential for insured losses increases. 

Policy conditions also vary depending on crop type, peril, 
and province. The AIR MPCI Model for China was built to 
accommodate these complex policy conditions.

Modeling Livestock Risk
Because China is the leading producer of chickens, pigs, 
goats, ducks, and sheep, and is the fourth-largest producer 
of cattle in the world by head, the potential for livestock 
losses is considerable. Livestock (including poultry) are 
susceptible not only to extreme weather events but also 
disease—a risk that can produce extreme livestock losses. 
For example, an outbreak of African swine fever—a highly 
infectious and deadly disease—started impacting pigs 
in China in 2018, resulting in a loss of half of China’s 400 
million pigs, or 40% of the world’s total agricultural pig 
population, as of the first half of 2020. The stochastic 
catalog in the AIR model provides a realistic view of the 
spread of disease among livestock, as shown in the figure, 
enabling users to probabilistically assess potential losses. 

The AIR MPCI Model for China estimates weather and 
disease losses to livestock, including all livestock types with 
federal subsidies for livestock insurance premium: dairy 
cattle, other cattle, breeding sow, other pig, poultry, and 
sheep/goats. Livestock death rates due to extreme weather 
are estimated by leveraging the model’s weather events 
that impact crops and forests. The frequency and severity 

of disease outbreaks for livestock (including poultry) in China 
are modeled from data from the World Organization for 
Animal Health and recent historical events.

Leveraging Local Data Amid a Highly Variable 
Climate
Mainland China has multiple climatic zones, ranging from 
subtropical to subarctic, and is subject to a wide range of 
weather events. The AIR MPCI Model for China captures the 
effects of drought, flood (due to excessive local precipitation, 
the runoff from more remote precipitation, and/or snowmelt), 
wind, frost, and heat, for crops; fire, wind, and pest/disease/
rodent for forests; and weather and disease for livestock. The 
model also captures the geographic variation in weather (for 
example, drought is more common in the arid north and west) 
and their different impacts (for example, dehydration in the 
case of drought, or crop rot in the case of flood). 

Because perils can be correlated in complex and non-linear 
ways, the model uses a single, unified weather catalog for 
all modeled lines of business and weather-based perils. To 
create a comprehensive 10,000-year catalog of simulated 
weather events, AIR scientists collected data on historical 
weather and disease events from various agencies, such as 
the U.S. National Oceanic and Atmospheric Administration 
and the National Bureau of Statistics of China. Daily 
temperature, precipitation, and wind speed data at high 
spatial resolution were also analyzed, and all this information 
was coupled with data on soils, terrain/elevation, and the 
spatial distribution of land cover types.

Swine Deaths
100,000 - 200,000
200,000 - 300,000
300,000 - 400,000
400,000 - 500,000
500,000 - 3,020,000

The modeled footprint of swine deaths (breeding sow and other 
pig combined) for an African swine fever-like event from the AIR 
stochastic catalog shows the potential severity of losses for a 
disease outbreak among livestock.
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Creating New Crop Year Scenarios from 
Historical Data
Historical flood, drought, snow, wind, frost, and heat 
events from 1979 to 2018 form the basis for generating 
the events that make up the model’s catalog of simulated 
events. By perturbing the growing conditions that 
were experienced during the historical years, a catalog 
representing a wide range of outcomes is produced—

each equally likely, but with potentially very different 
implications for insured losses.

The AIR event generation process carefully maintains 
correlations in growing conditions in both space and time. 
These correlations are extremely important from a risk 
management perspective, as they are the basis of any risk 
protection available from a well-diversified crop insurance 
portfolio.

library(ncdf)
library(devEMF)

rm(list=ls()); gc();gc();gc();gc()

source("Tools/gridPlotter.R")
source("F:/Models/AgChina/Tools/Utils/pcaFuncs.R")

file_dir = "F:/Models/AgChina/data/stochasticCatalog/"
files = dir(file_dir,".nc")

filesV04 = files[grep("V04",files)]
full_file_paths = paste(file_dir,filesV04,sep="")

nfiles = length(full_file_paths)

cell_loc = read.csv("F:/Models/AgChina/data/staticData/lonlatids.20110923.csv")

loc_order_indx = order(cell_loc$cellID)
cell_lon = cell_loc$lon[loc_order_indx]
cell_lat = cell_loc$lat[loc_order_indx]
cell_id = cell_loc$cellID[loc_order_indx]

cell_dim = dim(cell_loc)[1]
event_indx = c(1,31,61,91,121,358) + 22
event_dim = length(event_indx)

week_indx = 35

cmi_map = c() #array(NA,dim=c(event_dim,cell_dim))
cmi_hist_map = c()
event = c()
cell = c()

for (i in 1:nfiles) {

  nc = open.ncdf(full_file_paths[i])
  cmi = get.var.ncdf(nc,"cmi",start=c(1,1,week_indx),count=c(-1,-1,1))
  event = c(event,get.var.ncdf(nc,"event"))
  cell_tmp = get.var.ncdf(nc,"cell")
  cmi_cells = 1:(length(cell_tmp)/2)
  cell = c(cell,cell_tmp[cmi_cells])

  cmi = cmi[,cmi_cells]

file_dir = "F:/Models/AgChina/data/stochasticCatalog/"
files = dir(file_dir,".nc")

filesV04 = files[grep("V04",files)]
full_file_paths = paste(file_dir,filesV04,sep="")

nfiles = length(full_file_paths)

cell_loc = read.csv("F:/Models/AgChina/data/staticData/lonlatids.20110923.csv")

loc_order_indx = order(cell_loc$cellID)
cell_lon = cell_loc$lon[loc_order_indx]
cell_lat = cell_loc$lat[loc_order_indx]
cell_id = cell_loc$cellID[loc_order_indx]

cell_dim = dim(cell_loc)[1]
event_indx = c(1,31,61,91,121,358) + 22
event_dim = length(event_indx)

week_indx = 35

cmi_map = c() #array(NA,dim=c(event_dim,cell_dim))
cmi_hist_map = c()
event = c()
cell = c()

for (i in 1:nfiles) {

  nc = open.ncdf(full_file_paths[i])
  cmi = get.var.ncdf(nc,"cmi",start=c(1,1,week_indx),count=c(-1,-1,1))
  event = c(event,get.var.ncdf(nc,"event"))
  cell_tmp = get.var.ncdf(nc,"cell")
  cmi_cells = 1:(length(cell_tmp)/2)
  cell = c(cell,cell_tmp[cmi_cells])

  cmi = cmi[,cmi_cells]

#  week = get.var.ncdf(nc,"week")

  cmi_map = cbind(cmi_map,cmi[event_indx,])

  pca <- list(center   = get.var.ncdf(nc,"pcaCenter"),
              scale    = get.var.ncdf(nc,"pcaScale"),
              rotation = get.var.ncdf(nc,"pcaRot"),
              x        = get.var.ncdf(nc,"pcaX")) 
  weekHist <- get.var.ncdf(nc,"weekDate")
  cellHist <- get.var.ncdf(nc,"cellid")
  flagHist <- get.var.ncdf(nc,"perilFlag")
  yearHist <- get.var.ncdf(nc,"year")

  yea <- apply(weekHist,2,function(w) as.integer(format(strptime(w,format="%Y%m%d"),format="%Y")))
  mon <- apply(weekHist,2,function(w) as.integer(format(strptime(w,format="%Y%m%d"),format="%m")))
  day <- apply(weekHist,2,function(w) as.integer(format(strptime(w,format="%Y%m%d"),format="%j")))

  indxCMI <- which(flagHist==1)
  indxH   <- which(flagHist==2)

  ######## reconstruct historical CMI
  numCells <- dim(pca$x)[1]
  numWeeks <- dim(pca$x)[2]
  numYears <- dim(pca$x)[3]
  cmiHist <- array(pcaRecon(array(pca$x,c(numCells*numWeeks,numYears)),pca$rotation,pca$scale,pca$center),c(numCells,numWeeks,numYears))

  close.ncdf(nc)

  cmi_hist_map = c(cmi_hist_map,cmiHist[1:(numCells/2),week_indx,23])
}

cell_order_indx = order(cell)
cell = cell[cell_order_indx]
cmi_map = cmi_map[,cell_order_indx]
cmi_hist_map = cmi_hist_map[cell_order_indx]

gridPlotter(cell_lon,cell_lat,cmi_hist_map[],col=heat.colors(10))

  cmiHist <- array(pcaRecon(array(pca$x,c(numCells*numWeeks,numYears)),pca$rotation,pca$scale,pca$center),c(numCells,numWeeks,numYears))

file_dir = "F:/Models/AgChina/data/stochasticCatalog/"
files = dir(file_dir,".nc")

filesV04 = files[grep("V04",files)]
full_file_paths = paste(file_dir,filesV04,sep="")

nfiles = length(full_file_paths)

cell_loc = read.csv("F:/Models/AgChina/data/staticData/lonlatids.20110923.csv")

loc_order_indx = order(cell_loc$cellID)
cell_lon = cell_loc$lon[loc_order_indx]
cell_lat = cell_loc$lat[loc_order_indx]
cell_id = cell_loc$cellID[loc_order_indx]

cell_dim = dim(cell_loc)[1]
event_indx = c(1,31,61,91,121,358) + 22
event_dim = length(event_indx)

week_indx = 35

cmi_map = c() #array(NA,dim=c(event_dim,cell_dim))
cmi_hist_map = c()
event = c()
cell = c()

for (i in 1:nfiles) {

  nc = open.ncdf(full_file_paths[i])
  cmi = get.var.ncdf(nc,"cmi",start=c(1,1,week_indx),count=c(-1,-1,1))
  event = c(event,get.var.ncdf(nc,"event"))
  cell_tmp = get.var.ncdf(nc,"cell")
  cmi_cells = 1:(length(cell_tmp)/2)
  cell = c(cell,cell_tmp[cmi_cells])

  cmi = cmi[,cmi_cells]

#  week = get.var.ncdf(nc,"week")

  cmi_map = cbind(cmi_map,cmi[event_indx,])

  pca <- list(center   = get.var.ncdf(nc,"pcaCenter"),
              scale    = get.var.ncdf(nc,"pcaScale"),
              rotation = get.var.ncdf(nc,"pcaRot"),
              x        = get.var.ncdf(nc,"pcaX")) 
  weekHist <- get.var.ncdf(nc,"weekDate")
  cellHist <- get.var.ncdf(nc,"cellid")
  flagHist <- get.var.ncdf(nc,"perilFlag")
  yearHist <- get.var.ncdf(nc,"year")

  yea <- apply(weekHist,2,function(w) as.integer(format(strptime(w,format="%Y%m%d"),format="%Y")))
  mon <- apply(weekHist,2,function(w) as.integer(format(strptime(w,format="%Y%m%d"),format="%m")))
  day <- apply(weekHist,2,function(w) as.integer(format(strptime(w,format="%Y%m%d"),format="%j")))

  indxCMI <- which(flagHist==1)
  indxH   <- which(flagHist==2)

  ######## reconstruct historical CMI
  numCells <- dim(pca$x)[1]
  numWeeks <- dim(pca$x)[2]
  numYears <- dim(pca$x)[3]
  cmiHist <- array(pcaRecon(array(pca$x,c(numCells*numWeeks,numYears)),pca$rotation,pca$scale,pca$center),c(numCells,numWeeks,numYears))

  close.ncdf(nc)

  cmi_hist_map = c(cmi_hist_map,cmiHist[1:(numCells/2),week_indx,23])
}

cell_order_indx = order(cell)
cell = cell[cell_order_indx]
cmi_map = cmi_map[,cell_order_indx]
cmi_hist_map = cmi_hist_map[cell_order_indx]

gridPlotter(cell_lon,cell_lat,cmi_hist_map[],col=heat.colors(10))

library(ncdf)
library(devEMF)

rm(list=ls()); gc();gc();gc();gc()

source("Tools/gridPlotter.R")
source("F:/Models/AgChina/Tools/Utils/pcaFuncs.R")

file_dir = "F:/Models/AgChina/data/stochasticCatalog/"
files = dir(file_dir,".nc")

filesV04 = files[grep("V04",files)]
full_file_paths = paste(file_dir,filesV04,sep="")

nfiles = length(full_file_paths)

cell_loc = read.csv("F:/Models/AgChina/data/staticData/lonlatids.20110923.csv")

loc_order_indx = order(cell_loc$cellID)
cell_lon = cell_loc$lon[loc_order_indx]
cell_lat = cell_loc$lat[loc_order_indx]
cell_id = cell_loc$cellID[loc_order_indx]

cell_dim = dim(cell_loc)[1]
event_indx = c(1,31,61,91,121,358) + 22
event_dim = length(event_indx)

week_indx = 35

cmi_map = c() #array(NA,dim=c(event_dim,cell_dim))
cmi_hist_map = c()
event = c()
cell = c()

for (i in 1:nfiles) {

  nc = open.ncdf(full_file_paths[i])
  cmi = get.var.ncdf(nc,"cmi",start=c(1,1,week_indx),count=c(-1,-1,1))
  event = c(event,get.var.ncdf(nc,"event"))
  cell_tmp = get.var.ncdf(nc,"cell")
  cmi_cells = 1:(length(cell_tmp)/2)
  cell = c(cell,cell_tmp[cmi_cells])

  cmi = cmi[,cmi_cells]

Actual

Crop growing conditions during 
historical floods and droughts are 
“perturbed” to produce the model’s 
10,000-year catalog. Shown here 
are five realizations of perturbing the 
growing conditions during a historical 
flood event from May 2003.

Building Crop and Forest Location Data 
Crops and forests are susceptible to different 
perils, and a single peril can have a different impact 
depending on the line of business and location. Using 
satellite-derived land use/land cover data, government 
statistics, and published academic sources, AIR has 
identified the locations of cropland by crop type, 
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The spatial distribution of planted hectares of cropland (left) and forested hectares (right) in China show differences 
in location, which can impact vulnerability and potential risk.

as well as the locations of forests. Comparing planted 
hectares of cropland to forested hectares shows that 
while there is some overlap, the areas with the highest 
concentrations of crop and forestry exposure differ. 
While crops and forests are both susceptible to extreme 
weather, location can greatly impact the vulnerability and 
potential risk.
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Damage to Crops, Forests, and Livestock 
from Extreme Weather
The severity of damage from adverse weather events to 
crops, forests, and livestock depends upon many factors, 
such as the frequency, duration, location, and timing of an 
event during the season. The type of crop, tree, or animal 
that is at risk also impacts potential damage.  

A given weather event can have differing effects on 
different crop species or on the same crop during its 
different developmental stages. Some adverse effects 
of weather carry through to the end of a crop’s entire life 
cycle, while others may be partially mitigated by various 
repair or acclimation processes. It is the integration and 
interaction of all weather-related effects that determines 
the final damage to a crop as realized at harvest for 
all explicitly modeled crops. The weather scenarios in 
the AIR MPCI Model for China cover the extremes of 
water supply (from drought to flood), both low- and 
high-temperature extremes, as well as wind and storm 
damage that includes the effects of hail. The availability 
of water compared with each crop’s specific water needs 
is assessed using time-series data on daily minimum and 
maximum temperature, daily accumulated precipitation, 
available water capacity of soil, crop-specific data (water 
requirement at each stage of crop development, planting 
dates, and resilience to adverse weather conditions), 
land use/land cover, and terrain elevation. The aridity and 
soil moisture are computed based on a water balance 
module that estimates the plant-available water content 
at any point in a growing season. Excess moisture due 
to precipitation upstream and snowmelt is estimated by 
a runoff model. The effects of all the modeled weather 
variables are integrated using crop-specific damage 
functions to estimate insured losses.  

Weather events that impact crops also affect forests. The 
events that cause significant limb loss or tree death are 
wind, fire, pests, disease, and rodents. Damage functions 
account for the effect of damaging wind, including the 
effect of excessive precipitation that makes the uprooting 
of trees more likely. The location and severity of forest 
fires is largely determined by localized human behavior. 
The AIR MPCI Model for China uses a random forest–

based method that incorporates location-level data and 
weather predictors drawn from the model’s catalog of 
weather scenarios to estimate fire damage to forests. 
Pest, disease, and rodent damage is modeled statistically 
based upon province-level statistics. 

Livestock (including poultry) are also vulnerable to flood, 
wind, temperature extremes, and humidity. Animals can 
drown in floodwaters and die from diseases that spread 
after floods. Wind, especially with cold or snow, cause 
livestock damage; in 1993, for example, several events of 
strong wind, including sandstorms, in the east of Xinjiang, 
Gansu, Ningxia, and western Inner Mongolia, caused 
losses of 120,000 livestock. For poultry, heat stress 
caused by high temperature and humidity negatively 
affects productivity and immune response, decreasing 
production and even killing animals. In extreme cases, 
continuous snow events and snowpack can bury 
livestock, ice can cause cuts and lacerations, and low 
temperatures can cause frostbite. Grazing cattle and 
goats are additionally susceptible to snow and drought, 
both of which can make it difficult to find food and 
drinking water. Leveraging the weather catalog used for 
crops and forests, the AIR MPCI Model for China employs 
a linear regression-based model to estimate death rate 
due to weather. In addition, a statistical model is used to 
estimate the death rate due to disease.

Modeled Losses Are Validated Against 
Historical Losses
Damaged areas for crops and forests and death rates for 
livestock (including poultry) are validated using historical 
data. The figure displays the results for Shanxi Province 
showing that the modeled drought-damaged areas for 
the years 2009 to 2016 agree well with the historically 
observed damaged areas. The AIR MPCI Model for 
China calculates insured losses through the application 
of agricultural insurance policy conditions to the model’s 
catalog of simulated events. Each policy type is unique 
and may be based on combinations of province-average 
cost of production, perils, premium rates, sums insured, 
deductibles, and indemnity levels. To ensure the most 
reliable modeled loss estimates available, losses from the 
AIR MPCI Model for China are carefully validated against 
actual loss experience.
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The average annual loss (AAL) in the exceedance 
probability (EP) curve reflects historical loss ratios in 
China’s crop insurance market. “Tail” events with large 
return periods, such as major droughts, flood, or wind 
events, can produce losses that far exceed the average. 

The industry EP curve shown in orange shows the size 
of tail events relative to the average annual loss for a 
countrywide exposure of crop lines of business. When 
exposure is concentrated in an individual province, such 
as Shanxi shown in blue, the size of losses in tail events 
can far outstrip the average loss. The EP curves shown 
here have been scaled to the same average annual loss.

Applications for Crop Insurers and Reinsurers
MPCI programs are evaluated by applying each of the 
10,000-year catalog outcomes and determining the 
insured retained loss. The probability distribution of total 
losses across the 10,000 simulated outcomes provides 
the measure of the risk of loss. This is expressed in terms 
of an exceedance probability distribution, characterized 
by the average (expected) annual gain/loss, and losses at 
selected exceedance probability (EP) levels, such as 10% 
(10-year return period), 5% (20-year return period), 1% 
(100-year return period), and 0.4% (250-year return period) 
exceedance probabilities. 

Agricultural insurance and reinsurance evaluations are 
performed in AIR’s Touchstone ReTM software. Clients can 
generate custom results by using peril and line-of-business 
filters and adjusting premium rates and sum insured per mu. 
Agriculture insurers can evaluate alternative strategies in 
terms of expected profit versus potential risk. Reinsurers can 
price excess of loss and quota share programs and manage 
their entire portfolio.
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Model at a Glance
Modeled Perils  – Crops: Drought, flood, wind, frost, and heat

 – Forestry: Fire, wind, and pest/disease/rodent 
 – Livestock: Weather, disease

Model Domain Mainland China

Supported Geographic 
Resolution

County and province

Vulnerability Module Vulnerability varies by farming practice, peril, and crop developmental stage

Covered Lines of 
Business

 – Crops: Corn, cotton, rapeseed, rice, soybean, wheat, barley, peanut, potato, sugar (includes cane 
and beet sugar), and rubber are all explicitly modeled

 – Forestry: All forest types 
 – Livestock: Dairy cattle, other cattle, breeding sow, other pig, poultry, sheep/goat

Historical Catalog Historical losses based on current exposure and coverage terms recast for the years 1981 
through 2018 for crop and livestock (through 2015 for forestry)

Model Options Modeled output can be adjusted for sum insured per mu and premium rate and differentiated by 
peril and line of business

Model Highlights
 — Supports all central government-sponsored lines of business for agricultural insurance in China
 — Provides a probabilistic catalog reflecting the spatial and temporal correlations of losses
 — Isolates the impacts of extreme weather on crops, forests, and livestock at the county and province levels
 — Captures the variability of plant vulnerability to environmental stress throughout the plant life cycle
 — Includes the first probabilistic approach for determining the likelihood of insured losses to China’s forests
 — Provides a view of livestock risk that considers the impacts of both disease and extreme weather 
 — Reflects the differences in individual insurance programs, which can vary by province
 — Incorporates the latest policy conditions and terms 
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